Spaces:
Running
on
Zero
Running
on
Zero
# =========================================== | |
# IP-Composer 🌅✚🖌️ – FULL IMPROVED UI SCRIPT | |
# (기능 동일, UI·테마·갤러리 강화 + FileNotFoundError 수정) | |
# =========================================== | |
import os, json, random, gc | |
import numpy as np | |
import torch | |
from PIL import Image | |
import gradio as gr | |
from gradio.themes import Soft | |
from diffusers import StableDiffusionXLPipeline | |
import open_clip | |
from huggingface_hub import hf_hub_download | |
from IP_Composer.IP_Adapter.ip_adapter import IPAdapterXL | |
from IP_Composer.perform_swap import ( | |
compute_dataset_embeds_svd, | |
get_modified_images_embeds_composition, | |
) | |
from IP_Composer.generate_text_embeddings import ( | |
load_descriptions, | |
generate_embeddings, | |
) | |
import spaces | |
# ───────────────────────────── | |
# 1 · Device | |
# ───────────────────────────── | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# ───────────────────────────── | |
# 2 · Stable-Diffusion XL | |
# ───────────────────────────── | |
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0" | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
base_model_path, | |
torch_dtype=torch.float16, | |
add_watermarker=False, | |
) | |
# ───────────────────────────── | |
# 3 · IP-Adapter | |
# ───────────────────────────── | |
image_encoder_repo = "h94/IP-Adapter" | |
image_encoder_subfolder = "models/image_encoder" | |
ip_ckpt = hf_hub_download( | |
"h94/IP-Adapter", subfolder="sdxl_models", filename="ip-adapter_sdxl_vit-h.bin" | |
) | |
ip_model = IPAdapterXL( | |
pipe, image_encoder_repo, image_encoder_subfolder, ip_ckpt, device | |
) | |
# ───────────────────────────── | |
# 4 · CLIP | |
# ───────────────────────────── | |
clip_model, _, preprocess = open_clip.create_model_and_transforms( | |
"hf-hub:laion/CLIP-ViT-H-14-laion2B-s32B-b79K" | |
) | |
clip_model.to(device) | |
tokenizer = open_clip.get_tokenizer( | |
"hf-hub:laion/CLIP-ViT-H-14-laion2B-s32B-b79K" | |
) | |
# ───────────────────────────── | |
# 5 · Concept maps | |
# ───────────────────────────── | |
CONCEPTS_MAP = { | |
"age": "age_descriptions.npy", | |
"animal fur": "fur_descriptions.npy", | |
"dogs": "dog_descriptions.npy", | |
"emotions": "emotion_descriptions.npy", | |
"flowers": "flower_descriptions.npy", | |
"fruit/vegtable": "fruit_vegetable_descriptions.npy", | |
"outfit type": "outfit_descriptions.npy", | |
"outfit pattern (including color)": "outfit_pattern_descriptions.npy", | |
"patterns": "pattern_descriptions.npy", | |
"patterns (including color)": "pattern_descriptions_with_colors.npy", | |
"vehicle": "vehicle_descriptions.npy", | |
"daytime": "times_of_day_descriptions.npy", | |
"pose": "person_poses_descriptions.npy", | |
"season": "season_descriptions.npy", | |
"material": "material_descriptions_with_gems.npy", | |
} | |
RANKS_MAP = { | |
"age": 30, | |
"animal fur": 80, | |
"dogs": 30, | |
"emotions": 30, | |
"flowers": 30, | |
"fruit/vegtable": 30, | |
"outfit type": 30, | |
"outfit pattern (including color)": 80, | |
"patterns": 80, | |
"patterns (including color)": 80, | |
"vehicle": 30, | |
"daytime": 30, | |
"pose": 30, | |
"season": 30, | |
"material": 80, | |
} | |
concept_options = list(CONCEPTS_MAP.keys()) | |
# ───────────────────────────── | |
# 6 · Example tuples (base_img, c1_img, …) | |
# ───────────────────────────── | |
examples = [ | |
[ | |
"./IP_Composer/assets/patterns/base.jpg", | |
"./IP_Composer/assets/patterns/pattern.png", | |
"patterns (including color)", | |
None, | |
None, | |
None, | |
None, | |
80, | |
30, | |
30, | |
None, | |
1.0, | |
0, | |
30, | |
], | |
[ | |
"./IP_Composer/assets/flowers/base.png", | |
"./IP_Composer/assets/flowers/concept.png", | |
"flowers", | |
None, | |
None, | |
None, | |
None, | |
30, | |
30, | |
30, | |
None, | |
1.0, | |
0, | |
30, | |
], | |
[ | |
"./IP_Composer/assets/materials/base.png", | |
"./IP_Composer/assets/materials/concept.jpg", | |
"material", | |
None, | |
None, | |
None, | |
None, | |
80, | |
30, | |
30, | |
None, | |
1.0, | |
0, | |
30, | |
], | |
] | |
# ---------------------------------------------------------- | |
# 7 · Utility functions | |
# ---------------------------------------------------------- | |
def generate_examples( | |
base_image, | |
concept_image1, | |
concept_name1, | |
concept_image2, | |
concept_name2, | |
concept_image3, | |
concept_name3, | |
rank1, | |
rank2, | |
rank3, | |
prompt, | |
scale, | |
seed, | |
num_inference_steps, | |
): | |
return process_and_display( | |
base_image, | |
concept_image1, | |
concept_name1, | |
concept_image2, | |
concept_name2, | |
concept_image3, | |
concept_name3, | |
rank1, | |
rank2, | |
rank3, | |
prompt, | |
scale, | |
seed, | |
num_inference_steps, | |
) | |
MAX_SEED = np.iinfo(np.int32).max | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
return random.randint(0, MAX_SEED) if randomize_seed else seed | |
def change_rank_default(concept_name): | |
return RANKS_MAP.get(concept_name, 30) | |
def match_image_to_concept(image): | |
if image is None: | |
return None | |
img_pil = Image.fromarray(image).convert("RGB") | |
img_embed = get_image_embeds(img_pil, clip_model, preprocess, device) | |
sims = {} | |
for cname, cfile in CONCEPTS_MAP.items(): | |
try: | |
with open(f"./IP_Composer/text_embeddings/{cfile}", "rb") as f: | |
embeds = np.load(f) | |
scores = [] | |
for e in embeds: | |
s = np.dot( | |
img_embed.flatten() / np.linalg.norm(img_embed), | |
e.flatten() / np.linalg.norm(e), | |
) | |
scores.append(s) | |
scores.sort(reverse=True) | |
sims[cname] = np.mean(scores[:5]) | |
except Exception as e: | |
print(cname, "error:", e) | |
if sims: | |
best = max(sims, key=sims.get) | |
gr.Info(f"Image automatically matched to concept: {best}") | |
return best | |
return None | |
def get_image_embeds(pil_image, model=clip_model, preproc=preprocess, dev=device): | |
image = preproc(pil_image)[np.newaxis, :, :, :] | |
with torch.no_grad(): | |
embeds = model.encode_image(image.to(dev)) | |
return embeds.cpu().detach().numpy() | |
def process_images( | |
base_image, | |
concept_image1, | |
concept_name1, | |
concept_image2=None, | |
concept_name2=None, | |
concept_image3=None, | |
concept_name3=None, | |
rank1=10, | |
rank2=10, | |
rank3=10, | |
prompt=None, | |
scale=1.0, | |
seed=420, | |
num_inference_steps=50, | |
concpet_from_file_1=None, | |
concpet_from_file_2=None, | |
concpet_from_file_3=None, | |
use_concpet_from_file_1=False, | |
use_concpet_from_file_2=False, | |
use_concpet_from_file_3=False, | |
): | |
base_pil = Image.fromarray(base_image).convert("RGB") | |
base_embed = get_image_embeds(base_pil, clip_model, preprocess, device) | |
concept_images, concept_descs, ranks = [], [], [] | |
skip = [False, False, False] | |
# concept 1 | |
if concept_image1 is None: | |
return None, "Please upload at least one concept image" | |
concept_images.append(concept_image1) | |
if use_concpet_from_file_1 and concpet_from_file_1 is not None: | |
concept_descs.append(concpet_from_file_1) | |
skip[0] = True | |
else: | |
concept_descs.append(CONCEPTS_MAP[concept_name1]) | |
ranks.append(rank1) | |
# concept 2 | |
if concept_image2 is not None: | |
concept_images.append(concept_image2) | |
if use_concpet_from_file_2 and concpet_from_file_2 is not None: | |
concept_descs.append(concpet_from_file_2) | |
skip[1] = True | |
else: | |
concept_descs.append(CONCEPTS_MAP[concept_name2]) | |
ranks.append(rank2) | |
# concept 3 | |
if concept_image3 is not None: | |
concept_images.append(concept_image3) | |
if use_concpet_from_file_3 and concpet_from_file_3 is not None: | |
concept_descs.append(concpet_from_file_3) | |
skip[2] = True | |
else: | |
concept_descs.append(CONCEPTS_MAP[concept_name3]) | |
ranks.append(rank3) | |
concept_embeds, proj_mats = [], [] | |
for i, concept in enumerate(concept_descs): | |
img_pil = Image.fromarray(concept_images[i]).convert("RGB") | |
concept_embeds.append(get_image_embeds(img_pil, clip_model, preprocess, device)) | |
if skip[i]: | |
all_embeds = concept | |
else: | |
with open(f"./IP_Composer/text_embeddings/{concept}", "rb") as f: | |
all_embeds = np.load(f) | |
proj_mats.append(compute_dataset_embeds_svd(all_embeds, ranks[i])) | |
projections_data = [ | |
{"embed": e, "projection_matrix": p} | |
for e, p in zip(concept_embeds, proj_mats) | |
] | |
modified = get_modified_images_embeds_composition( | |
base_embed, | |
projections_data, | |
ip_model, | |
prompt=prompt, | |
scale=scale, | |
num_samples=1, | |
seed=seed, | |
num_inference_steps=num_inference_steps, | |
) | |
return modified[0] | |
def get_text_embeddings(concept_file): | |
descs = load_descriptions(concept_file) | |
embeds = generate_embeddings(descs, clip_model, tokenizer, device, batch_size=100) | |
return embeds, True | |
def process_and_display( | |
base_image, | |
concept_image1, | |
concept_name1="age", | |
concept_image2=None, | |
concept_name2=None, | |
concept_image3=None, | |
concept_name3=None, | |
rank1=30, | |
rank2=30, | |
rank3=30, | |
prompt=None, | |
scale=1.0, | |
seed=0, | |
num_inference_steps=50, | |
concpet_from_file_1=None, | |
concpet_from_file_2=None, | |
concpet_from_file_3=None, | |
use_concpet_from_file_1=False, | |
use_concpet_from_file_2=False, | |
use_concpet_from_file_3=False, | |
): | |
if base_image is None: | |
raise gr.Error("Please upload a base image") | |
if concept_image1 is None: | |
raise gr.Error("Choose at least one concept image") | |
return process_images( | |
base_image, | |
concept_image1, | |
concept_name1, | |
concept_image2, | |
concept_name2, | |
concept_image3, | |
concept_name3, | |
rank1, | |
rank2, | |
rank3, | |
prompt, | |
scale, | |
seed, | |
num_inference_steps, | |
concpet_from_file_1, | |
concpet_from_file_2, | |
concpet_from_file_3, | |
use_concpet_from_file_1, | |
use_concpet_from_file_2, | |
use_concpet_from_file_3, | |
) | |
# ---------------------------------------------------------- | |
# 8 · THEME & CSS | |
# ---------------------------------------------------------- | |
demo_theme = Soft(primary_hue="purple", font=[gr.themes.GoogleFont("Inter")]) | |
css = """ | |
body{ | |
background:#0f0c29; | |
background:linear-gradient(135deg,#0f0c29,#302b63,#24243e); | |
} | |
#header{ | |
text-align:center; | |
padding:24px 0 8px; | |
font-weight:700; | |
font-size:2.1rem; | |
color:#ffffff; | |
} | |
.gradio-container{max-width:1024px !important;margin:0 auto} | |
.card{ | |
border-radius:18px; | |
background:#ffffff0d; | |
padding:18px 22px; | |
backdrop-filter:blur(6px); | |
} | |
.gr-image,.gr-video{border-radius:14px} | |
.gr-image:hover{box-shadow:0 0 0 4px #a855f7} | |
""" | |
# ---------------------------------------------------------- | |
# 9 · UI | |
# ---------------------------------------------------------- | |
example_gallery = [ | |
["./IP_Composer/assets/patterns/base.jpg", "Patterns demo"], | |
["./IP_Composer/assets/flowers/base.png", "Flowers demo"], | |
["./IP_Composer/assets/materials/base.png", "Material demo"], | |
] | |
with gr.Blocks(css=css, theme=demo_theme) as demo: | |
gr.Markdown( | |
"<div id='header'>🌅 IP-Composer " | |
"<sup style='font-size:14px'>SDXL</sup></div>" | |
) | |
concpet_from_file_1, concpet_from_file_2, concpet_from_file_3 = ( | |
gr.State(), | |
gr.State(), | |
gr.State(), | |
) | |
use_concpet_from_file_1, use_concpet_from_file_2, use_concpet_from_file_3 = ( | |
gr.State(), | |
gr.State(), | |
gr.State(), | |
) | |
with gr.Row(equal_height=True): | |
with gr.Column(elem_classes="card"): | |
base_image = gr.Image( | |
label="Base Image (Required)", type="numpy", height=400, width=400 | |
) | |
for idx in (1, 2, 3): | |
with gr.Column(elem_classes="card"): | |
locals()[f"concept_image{idx}"] = gr.Image( | |
label=f"Concept Image {idx}" | |
if idx == 1 | |
else f"Concept {idx} (Optional)", | |
type="numpy", | |
height=400, | |
width=400, | |
) | |
locals()[f"concept_name{idx}"] = gr.Dropdown( | |
concept_options, | |
label=f"Concept {idx}", | |
value=None if idx != 1 else "age", | |
info="Pick concept type", | |
) | |
with gr.Accordion("💡 Or use a new concept 👇", open=False): | |
gr.Markdown( | |
"1. Upload a file with **>100** text variations<br>" | |
"2. Tip: Ask an LLM to list variations." | |
) | |
if idx == 1: | |
concept_file_1 = gr.File( | |
label="Concept variations", file_types=["text"] | |
) | |
elif idx == 2: | |
concept_file_2 = gr.File( | |
label="Concept variations", file_types=["text"] | |
) | |
else: | |
concept_file_3 = gr.File( | |
label="Concept variations", file_types=["text"] | |
) | |
with gr.Column(elem_classes="card"): | |
with gr.Accordion("⚙️ Advanced options", open=False): | |
prompt = gr.Textbox( | |
label="Guidance Prompt (Optional)", | |
placeholder="Optional text prompt to guide generation", | |
) | |
num_inference_steps = gr.Slider(1, 50, 30, step=1, label="Num steps") | |
with gr.Row(): | |
scale = gr.Slider(0.1, 2.0, 1.0, step=0.1, label="Scale") | |
randomize_seed = gr.Checkbox(True, label="Randomize seed") | |
seed = gr.Number(value=0, label="Seed", precision=0) | |
gr.Markdown( | |
"If a concept is not showing enough, **increase rank** ⬇️" | |
) | |
with gr.Row(): | |
rank1 = gr.Slider(1, 150, 30, step=1, label="Rank concept 1") | |
rank2 = gr.Slider(1, 150, 30, step=1, label="Rank concept 2") | |
rank3 = gr.Slider(1, 150, 30, step=1, label="Rank concept 3") | |
with gr.Column(elem_classes="card"): | |
output_image = gr.Image(show_label=False, height=480) | |
submit_btn = gr.Button("🔮 Generate", variant="primary", size="lg") | |
gr.Markdown("### 🔥 Ready-made examples") | |
gr.Gallery(example_gallery, label="클릭해서 미리보기", columns=[3], height="auto") | |
gr.Examples( | |
examples, | |
inputs=[ | |
base_image, | |
concept_image1, | |
concept_name1, | |
concept_image2, | |
concept_name2, | |
concept_image3, | |
concept_name3, | |
rank1, | |
rank2, | |
rank3, | |
prompt, | |
scale, | |
seed, | |
num_inference_steps, | |
], | |
outputs=[output_image], | |
fn=generate_examples, | |
cache_examples=False, | |
) | |
# Upload hooks | |
concept_file_1.upload( | |
get_text_embeddings, | |
[concept_file_1], | |
[concpet_from_file_1, use_concpet_from_file_1], | |
) | |
concept_file_2.upload( | |
get_text_embeddings, | |
[concept_file_2], | |
[concpet_from_file_2, use_concpet_from_file_2], | |
) | |
concept_file_3.upload( | |
get_text_embeddings, | |
[concept_file_3], | |
[concpet_from_file_3, use_concpet_from_file_3], | |
) | |
concept_file_1.delete( | |
lambda _: False, [concept_file_1], [use_concpet_from_file_1] | |
) | |
concept_file_2.delete( | |
lambda _: False, [concept_file_2], [use_concpet_from_file_2] | |
) | |
concept_file_3.delete( | |
lambda _: False, [concept_file_3], [use_concpet_from_file_3] | |
) | |
# Dropdown auto-rank | |
concept_name1.select(change_rank_default, [concept_name1], [rank1]) | |
concept_name2.select(change_rank_default, [concept_name2], [rank2]) | |
concept_name3.select(change_rank_default, [concept_name3], [rank3]) | |
# Auto-match on upload | |
concept_image1.upload(match_image_to_concept, [concept_image1], [concept_name1]) | |
concept_image2.upload(match_image_to_concept, [concept_image2], [concept_name2]) | |
concept_image3.upload(match_image_to_concept, [concept_image3], [concept_name3]) | |
# Generate chain | |
submit_btn.click(randomize_seed_fn, [seed, randomize_seed], seed).then( | |
process_and_display, | |
[ | |
base_image, | |
concept_image1, | |
concept_name1, | |
concept_image2, | |
concept_name2, | |
concept_image3, | |
concept_name3, | |
rank1, | |
rank2, | |
rank3, | |
prompt, | |
scale, | |
seed, | |
num_inference_steps, | |
concpet_from_file_1, | |
concpet_from_file_2, | |
concpet_from_file_3, | |
use_concpet_from_file_1, | |
use_concpet_from_file_2, | |
use_concpet_from_file_3, | |
], | |
[output_image], | |
) | |
# ───────────────────────────── | |
# 10 · Launch | |
# ───────────────────────────── | |
if __name__ == "__main__": | |
demo.launch() | |