File size: 6,860 Bytes
9e17d8f
7d125a7
f85986b
 
 
 
9e17d8f
f85986b
 
 
9e17d8f
f85986b
 
 
9e17d8f
 
 
 
 
 
 
 
 
f85986b
9e17d8f
 
 
 
 
f85986b
 
7d125a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e17d8f
 
f85986b
9e17d8f
f85986b
9e17d8f
f85986b
 
7d125a7
 
 
 
 
 
 
 
f85986b
 
9e17d8f
f85986b
7d125a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f85986b
 
7d125a7
010ba30
 
f85986b
 
 
 
 
 
 
 
 
 
9e17d8f
 
 
 
 
 
 
 
 
 
 
 
 
 
f85986b
 
7d125a7
 
 
 
 
 
 
f85986b
7d125a7
 
 
 
 
 
 
 
 
 
 
f85986b
7d125a7
9e17d8f
f85986b
7d125a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f85986b
7d125a7
f85986b
 
7d125a7
 
 
f85986b
7d125a7
 
 
 
 
 
 
 
 
f85986b
7d125a7
 
 
 
 
 
f85986b
 
9e17d8f
 
f85986b
 
010ba30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
import time
import gradio as gr
from gradio_imageslider import ImageSlider
from comfydeploy import ComfyDeploy
from PIL import Image
import requests
from io import BytesIO
import base64
import glob
from dotenv import load_dotenv

load_dotenv()

API_KEY = os.environ.get("COMFY_DEPLOY_API_KEY")
DEPLOYMENT_ID = os.environ.get("COMFY_DEPLOYMENT_ID")

if not API_KEY or not DEPLOYMENT_ID:
    raise ValueError(
        "Please set COMFY_DEPLOY_API_KEY and COMFY_DEPLOYMENT_ID in your environment variables"
    )

client = ComfyDeploy(bearer_auth=API_KEY)


def get_base64_from_image(image: Image.Image) -> str:
    buffered = BytesIO()
    image.save(buffered, format="PNG")
    return base64.b64encode(buffered.getvalue()).decode("utf-8")


def get_profile(profile) -> dict:
    return {
        "username": profile.username,
        "profile": profile.profile,
        "name": profile.name,
    }


async def process(
    image: Image.Image | None = None,
    profile: gr.OAuthProfile | None = None,
    progress: gr.Progress = gr.Progress(),
) -> tuple[Image.Image, Image.Image] | None:
    if not image:
        gr.Info("Please upload an image ")
        return None

    if profile is None:
        gr.Info("Please log in to process the image.")
        return None

    user_data = get_profile(profile)
    print("--------- RUN ----------")
    print(user_data)

    progress(0, desc="Preparing inputs...")
    image_base64 = get_base64_from_image(image)

    inputs = {
        "image": f"data:image/png;base64,{image_base64}",
        **{k: str(v) for k, v in params.items()},
    }

    output = await process_image(inputs, progress)

    progress(100, desc="Processing completed")

    return image, output


async def process_image(inputs: dict, progress: gr.Progress) -> Image.Image | None:
    try:
        result = client.run.create(
            request={"deployment_id": DEPLOYMENT_ID, "inputs": inputs}
        )

        if result and result.object:
            run_id: str = result.object.run_id
            progress(0, desc="Starting processing...")
            while True:
                run_result = client.run.get(run_id=run_id)
                if not run_result.object:
                    continue

                progress_value = run_result.object.progress or 0
                status = run_result.object.live_status or "Cold starting..."
                progress(progress_value, desc=f"Status: {status}")

                if run_result.object.status == "success":
                    for output in run_result.object.outputs or []:
                        if output.data and output.data.images:
                            image_url: str = output.data.images[0].url
                            response = requests.get(image_url)
                            processed_image = Image.open(BytesIO(response.content))
                            return processed_image
                elif run_result.object.status == "failed":
                    print("Processing failed")
                    return None

                time.sleep(1)  # Wait for 1 second before checking the status again
    except Exception as e:
        print(f"Error: {e}")
        return None


def load_preset_images():
    image_files = glob.glob("images/inputs/*")
    return [
        {"name": img, "image": Image.open(img)}
        for img in image_files
        if Image.open(img).format.lower()
        in ["png", "jpg", "jpeg", "gif", "bmp", "webp"]
    ]


def build_example(input_image_path):
    output_image_path = input_image_path.replace("inputs", "outputs")
    return [
        input_image_path,
        0.4,
        10,
        1024,
        1,
        4,
        0,
        1,
        0.7,
        (input_image_path, output_image_path),
    ]


def serialize_params(params: dict) -> dict:
    return {
        key: {"value": param.value, "label": param.label}
        for key, param in params.items()
    }


with gr.Blocks() as demo:
    gr.HTML("""
        <div style="display: flex; justify-content: center; text-align:center; flex-direction: column;">
            <h1 style="color: #333;">๐ŸŒŠ Creative Image Upscaler</h1>
            <div style="max-width: 800px; margin: 0 auto;">
                <p style="font-size: 16px;">Upload an image and adjust the parameters to enhance your image.</p>
                <p style="font-size: 16px;">Click on the <b>"Run"</b> button to process the image and compare the original and processed images using the slider.</p>
                <p style="font-size: 16px;">โš ๏ธ Note that the images are compressed to reduce the workloads of the demo.</p>
            </div>
        </div>
    """)
    with gr.Row(equal_height=False):
        with gr.Column():
            # The image overflow, fix
            input_image = gr.Image(type="pil", label="Input Image", interactive=True)

            with gr.Accordion("Avanced parameters", open=False):
                params = {
                    "denoise": gr.Slider(0, 1, value=0.4, label="Denoise"),
                    "steps": gr.Slider(1, 25, value=10, label="Steps"),
                    "tile_size": gr.Slider(256, 2048, value=1024, label="Tile Size"),
                    "downscale": gr.Slider(1, 4, value=1, label="Downscale"),
                    "upscale": gr.Slider(1, 4, value=4, label="Upscale"),
                    "color_match": gr.Slider(0, 1, value=0, label="Color Match"),
                    "controlnet_tile_end": gr.Slider(
                        0, 1, value=1, label="ControlNet Tile End"
                    ),
                    "controlnet_tile_strength": gr.Slider(
                        0, 1, value=0.7, label="ControlNet Tile Strength"
                    ),
                }

        with gr.Column():
            image_slider = ImageSlider(
                label="Compare Original and Processed", interactive=False
            )

            login_button = gr.LoginButton(scale=8)
            process_btn = gr.Button("Run", variant="primary", size="lg")

            process_btn.click(
                fn=lambda _: gr.update(interactive=False, value="Processing..."),
                inputs=[],
                outputs=[process_btn],
                api_name=False,
            ).then(
                fn=process,
                inputs=[
                    input_image,
                ],
                outputs=[image_slider],
                api_name=False,
            ).then(
                fn=lambda _: gr.update(interactive=True, value="Run"),
                inputs=[],
                outputs=[process_btn],
                api_name=False,
            )

    examples = [build_example(img) for img in glob.glob("images/inputs/*")]
    gr.Examples(examples=examples, inputs=[input_image, *params.values(), image_slider])

if __name__ == "__main__":
    demo.queue().launch(debug=True, share=True)