Spaces:
Paused
Paused
File size: 7,747 Bytes
f85986b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import gradio as gr
from gradio_imageslider import ImageSlider
import os
from comfydeploy import ComfyDeploy
import requests
from PIL import Image
from io import BytesIO
from dotenv import load_dotenv
import base64
from typing import Optional, Tuple, Union
import glob
load_dotenv()
# Initialize ComfyDeploy client
client: ComfyDeploy = ComfyDeploy(bearer_auth=os.environ.get("COMFY_DEPLOY_API_KEY"))
deployment_id: str = os.environ.get("COMFY_DEPLOYMENT_ID")
# Add these global variables at the top of the file, after imports
global_input_image = None
global_image_slider = None
def clear_output():
return None
def process_image(
image: Optional[Union[str, Image.Image]],
denoise: float,
steps: int,
tile_size: int,
downscale: float,
upscale: float,
color_match: float,
controlnet_tile_end: float,
controlnet_tile_strength: float,
) -> Tuple[Optional[Image.Image], Optional[Image.Image]]:
# Convert image to base64
if image is not None:
if isinstance(image, str):
with open(image, "rb") as img_file:
image_base64: str = base64.b64encode(img_file.read()).decode("utf-8")
else:
buffered: BytesIO = BytesIO()
image.save(buffered, format="PNG")
image_base64: str = base64.b64encode(buffered.getvalue()).decode("utf-8")
else:
return None, None
# Prepare inputs
inputs: dict = {
"image": f"data:image/png;base64,{image_base64}",
"denoise": str(denoise),
"steps": str(steps),
"tile_size": str(tile_size),
"downscale": str(downscale),
"upscale": str(upscale),
"color_match": str(color_match),
"controlnet_tile_end": str(controlnet_tile_end),
"controlnet_tile_strength": str(controlnet_tile_strength),
}
# Call ComfyDeploy API
try:
result = client.run.create(
request={"deployment_id": deployment_id, "inputs": inputs}
)
if result and result.object:
run_id: str = result.object.run_id
# Wait for the result
while True:
run_result = client.run.get(run_id=run_id)
if run_result.object.status == "success":
for output in run_result.object.outputs:
if output.data and output.data.images:
image_url: str = output.data.images[0].url
# Download and return both the original and processed images
response: requests.Response = requests.get(image_url)
processed_image: Image.Image = Image.open(
BytesIO(response.content)
)
return image, processed_image
return None, None
elif run_result.object.status == "failed":
return None, None
except Exception as e:
print(f"Error: {e}")
return None, None
def run(
denoise,
steps,
tile_size,
downscale,
upscale,
color_match,
controlnet_tile_end,
controlnet_tile_strength,
):
global global_input_image
global global_image_slider
if not global_input_image:
return None
# Set image_slider to None before processing
global_image_slider = None
# Process the image
original, processed = process_image(
global_input_image,
denoise,
steps,
tile_size,
downscale,
upscale,
color_match,
controlnet_tile_end,
controlnet_tile_strength,
)
if original and processed:
global_image_slider = [original, processed]
return global_image_slider
# Function to load preset images
def load_preset_images():
image_files = glob.glob("images/inputs/*")
return [
{"name": img, "image": Image.open(img)}
for img in image_files
if Image.open(img).format.lower()
in ["png", "jpg", "jpeg", "gif", "bmp", "webp"]
]
def set_input_image(images, evt: gr.SelectData):
global global_input_image
global_input_image = images[evt.index][0]
return global_input_image
# Define Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# π Creative Image Upscaler")
with gr.Row():
with gr.Column():
input_image = gr.Image(
type="pil",
label="Input Image",
value=lambda: global_input_image,
interactive=True,
)
# Add preset images
gr.Markdown("### Preset Images")
preset_images = load_preset_images()
gallery = gr.Gallery(
[img["image"] for img in preset_images],
label="Preset Images",
columns=5,
height=130,
allow_preview=False,
)
gallery.select(set_input_image, gallery, input_image)
with gr.Accordion("Advanced Parameters", open=False):
denoise: gr.Slider = gr.Slider(0, 1, value=0.4, label="Denoise")
steps: gr.Slider = gr.Slider(1, 40, value=10, step=1, label="Steps")
tile_size: gr.Slider = gr.Slider(
64, 2048, value=1024, step=8, label="Tile Size"
)
downscale: gr.Slider = gr.Slider(
1, 4, value=1, step=1, label="Downscale"
)
upscale: gr.Slider = gr.Slider(1, 4, value=4, step=0.1, label="Upscale")
color_match: gr.Slider = gr.Slider(0, 1, value=0, label="Color Match")
controlnet_tile_end: gr.Slider = gr.Slider(
0, 1, value=1, label="ControlNet Tile End"
)
controlnet_tile_strength: gr.Slider = gr.Slider(
0, 1, value=0.7, label="ControlNet Tile Strength"
)
with gr.Column():
image_slider = ImageSlider(
label="Compare Original and Processed",
type="pil",
value=lambda: global_image_slider,
interactive=True,
)
process_btn: gr.Button = gr.Button("Run")
process_btn.click(
fn=run,
inputs=[
denoise,
steps,
tile_size,
downscale,
upscale,
color_match,
controlnet_tile_end,
controlnet_tile_strength,
],
outputs=[image_slider],
)
def build_example(input_image_path):
output_image_path = input_image_path.replace("inputs", "outputs")
return [
input_image_path,
0.4, # denoise
10, # steps
1024, # tile_size
1, # downscale
4, # upscale
0, # color_match
1, # controlnet_tile_end
0.7, # controlnet_tile_strength
(input_image_path, output_image_path),
]
# Build examples
input_images = glob.glob("images/inputs/*")
examples = [build_example(img) for img in input_images]
# Update the gr.Examples call
gr.Examples(
examples=examples,
inputs=[
input_image,
denoise,
steps,
tile_size,
downscale,
upscale,
color_match,
controlnet_tile_end,
controlnet_tile_strength,
image_slider,
],
)
if __name__ == "__main__":
demo.launch(debug=True, share=True)
|