File size: 6,656 Bytes
e728bee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import cv2
import numpy as np
import imghdr
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
from PIL import Image
from PIL.ExifTags import TAGS

# Load the saved model
model_path = "deepfake_detector.h5"
model = load_model(model_path)

# Image dimensions
img_height, img_width = 128, 128

# Trained model prediction
def predict_image(img_path):
    if not os.path.exists(img_path):
        return "Image path does not exist."
    img = image.load_img(img_path, target_size=(img_height, img_width))
    img_array = image.img_to_array(img) / 255.0
    img_array = np.expand_dims(img_array, axis=0)
    prediction = model.predict(img_array)
    return "Fake" if prediction[0][0] > 0.5 else "Real"

def predict_video(video_path):
    """Predict whether a video is real or fake by analyzing frames."""
    try:
        cap = cv2.VideoCapture(video_path)
        fake_count, real_count = 0, 0
        total_frames = 0
        results = {}

        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break

            # Process every 5th frame to improve performance
            if total_frames % 5 == 0:
                # Analyze frame using all detection methods
                frame_path = f"temp_frame_{total_frames}.jpg"
                cv2.imwrite(frame_path, frame)
                
                frame_results = combined_prediction(frame_path)
                if frame_results["Final Prediction"] == "Fake":
                    fake_count += 1
                else:
                    real_count += 1
                    
                os.remove(frame_path)
            
            total_frames += 1

        cap.release()

        # Calculate final results
        total_analyzed_frames = fake_count + real_count
        fake_percentage = (fake_count / total_analyzed_frames * 100) if total_analyzed_frames > 0 else 0
        
        results["Total Frames Analyzed"] = total_analyzed_frames
        results["Fake Frames"] = fake_count
        results["Real Frames"] = real_count
        results["Fake Percentage"] = round(fake_percentage, 2)
        results["Final Video Prediction"] = "Fake" if fake_percentage > 50 else "Real"
        results["Confidence Score"] = round(abs(50 - fake_percentage) / 50, 2)
        
        return results

    except Exception as e:
        return {"Error": f"Error analyzing video: {str(e)}"}

# Metadata analysis
def check_metadata(img_path):
    try:
        img = Image.open(img_path)
        exif_data = img._getexif()
        if not exif_data:
            return "Fake (missing metadata)"
        metadata = {TAGS.get(tag): value for tag, value in exif_data.items() if tag in TAGS}
        return "Real (metadata present)" if metadata else "Fake (missing metadata)"
    except Exception as e:
        return f"Error analyzing metadata: {str(e)}"

# Artifact density analysis
def analyze_artifacts(img_path):
    try:
        img = cv2.imread(img_path)
        img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        laplacian = cv2.Laplacian(img_gray, cv2.CV_64F)
        mean_var = np.mean(np.var(laplacian))
        return "Fake (high artifact density)" if mean_var > 10 else "Real"
    except Exception as e:
        return f"Error analyzing artifacts: {str(e)}"

# Noise pattern detection
def detect_noise_patterns(img_path):
    try:
        img = cv2.imread(img_path)
        img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        noise_std = np.std(img_gray)
        return "Fake (unnatural noise patterns)" if noise_std < 5 else "Real"
    except Exception as e:
        return f"Error analyzing noise patterns: {str(e)}"

# Symmetry analysis
def calculate_symmetry(img_path):
    try:
        img = cv2.imread(img_path)
        img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        img_flipped_v = cv2.flip(img_gray, 1)
        img_flipped_h = cv2.flip(img_gray, 0)
        vertical_symmetry = 1 - np.mean(np.abs(img_gray - img_flipped_v)) / 255
        horizontal_symmetry = 1 - np.mean(np.abs(img_gray - img_flipped_h)) / 255
        return {
            "Vertical Symmetry": round(vertical_symmetry, 2),
            "Horizontal Symmetry": round(horizontal_symmetry, 2)
        }
    except Exception as e:
        return {"Error": str(e)}

# Combine all methods
def combined_prediction(img_path):
    results = {}
    cnn_prediction = predict_image(img_path)
    results["CNN Prediction"] = cnn_prediction
    cnn_score = 1 if cnn_prediction == "Fake" else 0
    metadata_result = check_metadata(img_path)
    results["Metadata Analysis"] = metadata_result
    metadata_score = 1 if "Fake" in metadata_result else 0
    artifact_result = analyze_artifacts(img_path)
    results["Artifact Analysis"] = artifact_result
    artifact_score = 1 if "Fake" in artifact_result else 0
    noise_result = detect_noise_patterns(img_path)
    results["Noise Pattern Analysis"] = noise_result
    noise_score = 1 if "Fake" in noise_result else 0
    symmetry_results = calculate_symmetry(img_path)
    results["Symmetry Analysis"] = symmetry_results
    vertical_symmetry = symmetry_results.get("Vertical Symmetry", 0)
    horizontal_symmetry = symmetry_results.get("Horizontal Symmetry", 0)
    symmetry_score = 0
    if vertical_symmetry != "Unknown" and horizontal_symmetry != "Unknown":
        if vertical_symmetry > 0.9 or horizontal_symmetry > 0.9:
            symmetry_score = 1
    total_score = (cnn_score * 0.4 + metadata_score * 0.1 +
                   artifact_score * 0.15 + noise_score * 0.15 +
                   symmetry_score * 0.2)
    results["Final Prediction"] = "Fake" if total_score > 0.5 else "Real"
    results["Confidence Score"] = round(total_score, 2)
    return results

# Main function
if __name__ == "__main__":
    test_image_path = "C:/Users/ramya/OneDrive - iiit-b/Desktop/test1.jpg"
    if os.path.exists(test_image_path):
        final_results = combined_prediction(test_image_path)
        print("\nCombined Prediction Results:")
        for key, value in final_results.items():
            if isinstance(value, dict):
                print(f"{key}:")
                for sub_key, sub_value in value.items():
                    print(f"  {sub_key}: {sub_value}")
            else:
                print(f"{key}: {value}")

# if __name__ == "__main__":
#     # Test video
#     test_video_path = "path/to/your/video.mp4"
#     if os.path.exists(test_video_path):
#         video_results = predict_video(test_video_path)
#         print("\nVideo Analysis Results:")
#         for key, value in video_results.items():
#             print(f"{key}: {value}")