import os import cv2 import numpy as np import imghdr from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image from PIL import Image from PIL.ExifTags import TAGS # Load the saved model model_path = "deepfake_detector.h5" model = load_model(model_path) # Image dimensions img_height, img_width = 128, 128 # Trained model prediction def predict_image(img_path): if not os.path.exists(img_path): return "Image path does not exist." img = image.load_img(img_path, target_size=(img_height, img_width)) img_array = image.img_to_array(img) / 255.0 img_array = np.expand_dims(img_array, axis=0) prediction = model.predict(img_array) return "Fake" if prediction[0][0] > 0.5 else "Real" def predict_video(video_path): """Predict whether a video is real or fake by analyzing frames.""" try: cap = cv2.VideoCapture(video_path) fake_count, real_count = 0, 0 total_frames = 0 results = {} while cap.isOpened(): ret, frame = cap.read() if not ret: break # Process every 5th frame to improve performance if total_frames % 5 == 0: # Analyze frame using all detection methods frame_path = f"temp_frame_{total_frames}.jpg" cv2.imwrite(frame_path, frame) frame_results = combined_prediction(frame_path) if frame_results["Final Prediction"] == "Fake": fake_count += 1 else: real_count += 1 os.remove(frame_path) total_frames += 1 cap.release() # Calculate final results total_analyzed_frames = fake_count + real_count fake_percentage = (fake_count / total_analyzed_frames * 100) if total_analyzed_frames > 0 else 0 results["Total Frames Analyzed"] = total_analyzed_frames results["Fake Frames"] = fake_count results["Real Frames"] = real_count results["Fake Percentage"] = round(fake_percentage, 2) results["Final Video Prediction"] = "Fake" if fake_percentage > 50 else "Real" results["Confidence Score"] = round(abs(50 - fake_percentage) / 50, 2) return results except Exception as e: return {"Error": f"Error analyzing video: {str(e)}"} # Metadata analysis def check_metadata(img_path): try: img = Image.open(img_path) exif_data = img._getexif() if not exif_data: return "Fake (missing metadata)" metadata = {TAGS.get(tag): value for tag, value in exif_data.items() if tag in TAGS} return "Real (metadata present)" if metadata else "Fake (missing metadata)" except Exception as e: return f"Error analyzing metadata: {str(e)}" # Artifact density analysis def analyze_artifacts(img_path): try: img = cv2.imread(img_path) img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) laplacian = cv2.Laplacian(img_gray, cv2.CV_64F) mean_var = np.mean(np.var(laplacian)) return "Fake (high artifact density)" if mean_var > 10 else "Real" except Exception as e: return f"Error analyzing artifacts: {str(e)}" # Noise pattern detection def detect_noise_patterns(img_path): try: img = cv2.imread(img_path) img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) noise_std = np.std(img_gray) return "Fake (unnatural noise patterns)" if noise_std < 5 else "Real" except Exception as e: return f"Error analyzing noise patterns: {str(e)}" # Symmetry analysis def calculate_symmetry(img_path): try: img = cv2.imread(img_path) img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img_flipped_v = cv2.flip(img_gray, 1) img_flipped_h = cv2.flip(img_gray, 0) vertical_symmetry = 1 - np.mean(np.abs(img_gray - img_flipped_v)) / 255 horizontal_symmetry = 1 - np.mean(np.abs(img_gray - img_flipped_h)) / 255 return { "Vertical Symmetry": round(vertical_symmetry, 2), "Horizontal Symmetry": round(horizontal_symmetry, 2) } except Exception as e: return {"Error": str(e)} # Combine all methods def combined_prediction(img_path): results = {} cnn_prediction = predict_image(img_path) results["CNN Prediction"] = cnn_prediction cnn_score = 1 if cnn_prediction == "Fake" else 0 metadata_result = check_metadata(img_path) results["Metadata Analysis"] = metadata_result metadata_score = 1 if "Fake" in metadata_result else 0 artifact_result = analyze_artifacts(img_path) results["Artifact Analysis"] = artifact_result artifact_score = 1 if "Fake" in artifact_result else 0 noise_result = detect_noise_patterns(img_path) results["Noise Pattern Analysis"] = noise_result noise_score = 1 if "Fake" in noise_result else 0 symmetry_results = calculate_symmetry(img_path) results["Symmetry Analysis"] = symmetry_results vertical_symmetry = symmetry_results.get("Vertical Symmetry", 0) horizontal_symmetry = symmetry_results.get("Horizontal Symmetry", 0) symmetry_score = 0 if vertical_symmetry != "Unknown" and horizontal_symmetry != "Unknown": if vertical_symmetry > 0.9 or horizontal_symmetry > 0.9: symmetry_score = 1 total_score = (cnn_score * 0.4 + metadata_score * 0.1 + artifact_score * 0.15 + noise_score * 0.15 + symmetry_score * 0.2) results["Final Prediction"] = "Fake" if total_score > 0.5 else "Real" results["Confidence Score"] = round(total_score, 2) return results # Main function if __name__ == "__main__": test_image_path = "C:/Users/ramya/OneDrive - iiit-b/Desktop/test1.jpg" if os.path.exists(test_image_path): final_results = combined_prediction(test_image_path) print("\nCombined Prediction Results:") for key, value in final_results.items(): if isinstance(value, dict): print(f"{key}:") for sub_key, sub_value in value.items(): print(f" {sub_key}: {sub_value}") else: print(f"{key}: {value}") # if __name__ == "__main__": # # Test video # test_video_path = "path/to/your/video.mp4" # if os.path.exists(test_video_path): # video_results = predict_video(test_video_path) # print("\nVideo Analysis Results:") # for key, value in video_results.items(): # print(f"{key}: {value}")