Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import os | |
""" | |
Copied from inference in colab notebook | |
""" | |
from transformers import pipeline | |
# Load model and tokenizer globally to avoid reloading for every request | |
model_path = "Mat17892/t5small_enfr_opus" | |
# translator = pipeline("translation_xx_to_yy", model=model_path) | |
# def respond( | |
# message: str, | |
# history: list[tuple[str, str]], | |
# system_message: str, | |
# max_tokens: int, | |
# temperature: float, | |
# top_p: float, | |
# ): | |
# message = "translate English to French:" + message | |
# response = translator(message)[0] | |
# yield response['translation_text'] | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, TextIteratorStreamer | |
import threading | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_path) | |
def respond( | |
message: str, | |
system_message: str, | |
max_tokens: int = 128, | |
temperature: float = 1.0, | |
top_p: float = 1.0, | |
): | |
# Preprocess the input message | |
input_text = system_message + " " + message | |
input_ids = tokenizer(input_text, return_tensors="pt").input_ids | |
# Set up the streamer | |
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True) | |
# Generate in a separate thread to avoid blocking | |
generation_thread = threading.Thread( | |
target=model.generate, | |
kwargs={ | |
"input_ids": input_ids, | |
"max_new_tokens": max_tokens, | |
"do_sample": True, | |
"temperature": temperature, | |
"top_p": top_p, | |
"streamer": streamer, | |
}, | |
) | |
generation_thread.start() | |
# Stream the output progressively | |
generated_text = "" | |
for token in streamer: # Append each token to the accumulated text | |
generated_text += token | |
yield generated_text | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
# Define the interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Google Translate-like Interface") | |
with gr.Row(): | |
with gr.Column(): | |
source_textbox = gr.Textbox( | |
placeholder="Enter text in English...", | |
label="Source Text (English)", | |
lines=5, | |
) | |
with gr.Column(): | |
translated_textbox = gr.Textbox( | |
placeholder="Translation will appear here...", | |
label="Translated Text (French)", | |
lines=5, | |
interactive=False, | |
) | |
translate_button = gr.Button("Translate") | |
with gr.Accordion("Advanced Settings", open=False): | |
system_message_input = gr.Textbox( | |
value="translate English to French:", | |
label="System message", | |
) | |
max_tokens_slider = gr.Slider( | |
minimum=1, maximum=2048, value=512, step=1, label="Max new tokens" | |
) | |
temperature_slider = gr.Slider( | |
minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature" | |
) | |
top_p_slider = gr.Slider( | |
minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" | |
) | |
# Define functionality | |
translate_button.click( | |
respond, | |
inputs=[ | |
source_textbox, | |
system_message_input, | |
max_tokens_slider, | |
temperature_slider, | |
top_p_slider, | |
], | |
outputs=translated_textbox, | |
) | |
if __name__ == "__main__": | |
demo.launch() | |