Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
@@ -15,13 +15,14 @@ model_path = "Mat17892/t5small_enfr_opus"
|
|
15 |
|
16 |
# Load tokenizer
|
17 |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True, legacy=False)
|
|
|
18 |
|
19 |
-
# Load the base model (e.g., LLaMA)
|
20 |
-
base_model = AutoModelForSeq2SeqLM.from_pretrained(base_model, token = os.getenv('huggingface_token'))
|
21 |
|
22 |
-
# Load LoRA adapter
|
23 |
-
from peft import PeftModel
|
24 |
-
model = PeftModel.from_pretrained(base_model, model_path, token = os.getenv('huggingface_token'))
|
25 |
|
26 |
def respond(
|
27 |
message: str,
|
|
|
15 |
|
16 |
# Load tokenizer
|
17 |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True, legacy=False)
|
18 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_path, token = os.getenv('huggingface_token'))
|
19 |
|
20 |
+
# # Load the base model (e.g., LLaMA)
|
21 |
+
# base_model = AutoModelForSeq2SeqLM.from_pretrained(base_model, token = os.getenv('huggingface_token'))
|
22 |
|
23 |
+
# # Load LoRA adapter
|
24 |
+
# from peft import PeftModel
|
25 |
+
# model = PeftModel.from_pretrained(base_model, model_path, token = os.getenv('huggingface_token'))
|
26 |
|
27 |
def respond(
|
28 |
message: str,
|