import gradio as gr from huggingface_hub import InferenceClient import os """ Copied from inference in colab notebook """ from transformers import TextIteratorStreamer , pipeline from threading import Thread # Load model and tokenizer globally to avoid reloading for every request model_path = "Mat17892/t5small_enfr_opus" translator = pipeline("translation_xx_to_yy", model=model_path) def respond( message: str, history: list[tuple[str, str]], system_message: str, max_tokens: int, temperature: float, top_p: float, ): message = "translate English to French:" + message response = translator(message) print(response) yield response # def respond( # message: str, # history: list[tuple[str, str]], # system_message: str, # max_tokens: int, # temperature: float, # top_p: float, # ): # # Combine system message and history into a single prompt # messages = [{"role": "system", "content": system_message}] # for val in history: # if val[0]: # messages.append({"role": "user", "content": val[0]}) # if val[1]: # messages.append({"role": "assistant", "content": val[1]}) # messages.append({"role": "user", "content": message}) # # Tokenize the messages # inputs = tokenizer.apply_chat_template( # messages, # tokenize = True, # add_generation_prompt = True, # Must add for generation # return_tensors = "pt", # ) # # Generate tokens incrementally # streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) # generation_kwargs = { # "input_ids": inputs, # "max_new_tokens": max_tokens, # "temperature": temperature, # "top_p": top_p, # "do_sample": True, # "streamer": streamer, # } # thread = Thread(target=model.generate, kwargs=generation_kwargs) # thread.start() # # Yield responses as they are generated # response = "" # for token in streamer: # response += token # yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()