IST199655
commited on
Commit
·
344f6f5
1
Parent(s):
f7bf18e
Update app.py
Browse files
app.py
CHANGED
@@ -10,72 +10,19 @@ import torch
|
|
10 |
from threading import Thread
|
11 |
|
12 |
# Load model and tokenizer globally to avoid reloading for every request
|
|
|
13 |
model_path = "Heit39/llama_lora_model_1"
|
14 |
|
15 |
# Load tokenizer
|
16 |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True, legacy=False)
|
17 |
|
18 |
# Load the base model (e.g., LLaMA)
|
19 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
20 |
|
21 |
# Load LoRA adapter
|
22 |
from peft import PeftModel
|
23 |
model = PeftModel.from_pretrained(base_model, model_path)
|
24 |
|
25 |
-
|
26 |
-
# Define the response function
|
27 |
-
# def respond(
|
28 |
-
# message: str,
|
29 |
-
# history: list[tuple[str, str]],
|
30 |
-
# system_message: str,
|
31 |
-
# max_tokens: int,
|
32 |
-
# temperature: float,
|
33 |
-
# top_p: float,
|
34 |
-
# ):
|
35 |
-
# # Combine system message and history into a single prompt
|
36 |
-
# messages = [{"role": "system", "content": system_message}]
|
37 |
-
# for val in history:
|
38 |
-
# if val[0]:
|
39 |
-
# messages.append({"role": "user", "content": val[0]})
|
40 |
-
# if val[1]:
|
41 |
-
# messages.append({"role": "assistant", "content": val[1]})
|
42 |
-
# messages.append({"role": "user", "content": message})
|
43 |
-
|
44 |
-
# # Create a single text prompt from the messages
|
45 |
-
# prompt = ""
|
46 |
-
# for msg in messages:
|
47 |
-
# if msg["role"] == "system":
|
48 |
-
# prompt += f"[System]: {msg['content']}\n\n"
|
49 |
-
# elif msg["role"] == "user":
|
50 |
-
# prompt += f"[User]: {msg['content']}\n\n"
|
51 |
-
# elif msg["role"] == "assistant":
|
52 |
-
# prompt += f"[Assistant]: {msg['content']}\n\n"
|
53 |
-
|
54 |
-
# # Tokenize the prompt
|
55 |
-
# inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
|
56 |
-
# input_ids = inputs.input_ids.to("cpu") # Ensure input is on the CPU
|
57 |
-
|
58 |
-
# # Generate response
|
59 |
-
# output_ids = model.generate(
|
60 |
-
# input_ids,
|
61 |
-
# max_length=input_ids.shape[1] + max_tokens,
|
62 |
-
# temperature=temperature,
|
63 |
-
# top_p=top_p,
|
64 |
-
# do_sample=True,
|
65 |
-
# )
|
66 |
-
|
67 |
-
# # Decode the generated text
|
68 |
-
# generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
69 |
-
|
70 |
-
# # Extract the assistant's response from the generated text
|
71 |
-
# assistant_response = generated_text[len(prompt):].strip()
|
72 |
-
|
73 |
-
# # Yield responses incrementally (simulate streaming)
|
74 |
-
# response = ""
|
75 |
-
# for token in assistant_response.split(): # Split tokens by whitespace
|
76 |
-
# response += token + " "
|
77 |
-
# yield response.strip()
|
78 |
-
|
79 |
def respond(
|
80 |
message: str,
|
81 |
history: list[tuple[str, str]],
|
|
|
10 |
from threading import Thread
|
11 |
|
12 |
# Load model and tokenizer globally to avoid reloading for every request
|
13 |
+
base_model = "unsloth/Llama-3.2-3B-Instruct"
|
14 |
model_path = "Heit39/llama_lora_model_1"
|
15 |
|
16 |
# Load tokenizer
|
17 |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True, legacy=False)
|
18 |
|
19 |
# Load the base model (e.g., LLaMA)
|
20 |
+
base_model = AutoModelForCausalLM.from_pretrained(base_model)
|
21 |
|
22 |
# Load LoRA adapter
|
23 |
from peft import PeftModel
|
24 |
model = PeftModel.from_pretrained(base_model, model_path)
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
def respond(
|
27 |
message: str,
|
28 |
history: list[tuple[str, str]],
|