import torch import torch.nn.functional as F import numpy as np def load_tensor(): coeffs = [None,None] coeffs[0] = torch.load('tensor1.pt') coeffs[1] = torch.load('tensor2.pt') return coeffs def calc_preds(coeffs, indeps): layers,consts = coeffs n = len(layers) res = indeps for i,l in enumerate(layers): res = res@l + consts[i] if i!=n-1: res = F.relu(res) return torch.sigmoid(res)