Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +46 -22
- requirements.txt +141 -59
app.py
CHANGED
@@ -1,39 +1,63 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
|
4 |
-
|
5 |
-
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
for i in range(10):
|
10 |
-
st.append(';'.join(map(str, df_original.iloc[i])))
|
11 |
-
return st
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
def
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
20 |
|
21 |
|
|
|
22 |
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
user_id = int(user_id)
|
27 |
-
time_played_original = float(time_played)
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
|
|
37 |
return ans
|
38 |
|
39 |
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
|
4 |
+
from fastai.tabular.all import *
|
5 |
+
from fastai.layers import Module, Embedding, sigmoid_range
|
6 |
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
|
|
|
|
|
|
9 |
|
10 |
+
class DotProductBias(Module):
|
11 |
+
def __init__(self, n_users, n_games, n_factors, y_range=(0.1, 11754.0)):
|
12 |
+
self.user_factors = Embedding(n_users, n_factors)
|
13 |
+
self.user_bias = Embedding(n_users, 1)
|
14 |
+
self.game_factors = Embedding(n_games, n_factors)
|
15 |
+
self.game_bias = Embedding(n_games, 1)
|
16 |
+
self.y_range = y_range
|
17 |
|
18 |
+
def forward(self, x):
|
19 |
+
users = self.user_factors(x[:, 0])
|
20 |
+
games = self.game_factors(x[:, 1])
|
21 |
+
res = (users * games).sum(dim=1, keepdim=True)
|
22 |
+
res += self.user_bias(x[:, 0]) + self.game_bias(x[:, 1])
|
23 |
+
return torch.sigmoid(res) * (self.y_range[1] - self.y_range[0]) + self.y_range[0]
|
24 |
|
25 |
|
26 |
+
df = pd.read_csv('original.csv')
|
27 |
|
28 |
+
path = Path("./model.pkl")
|
29 |
+
learn = load_learner(path, 'model.pkl')
|
30 |
+
|
31 |
+
|
32 |
+
examples = list(df['user-id'].unique())[:20]
|
33 |
+
|
34 |
+
all_games_title = list(df['game-title'].unique())
|
35 |
+
|
36 |
+
|
37 |
+
def predict(user_id):
|
38 |
|
39 |
user_id = int(user_id)
|
|
|
40 |
|
41 |
+
games_alredy_played = list(df[(df['user-id'] == user_id)]['game-title'].unique())
|
42 |
+
|
43 |
+
games_not_played = set(all_games_title) - set(games_alredy_played)
|
44 |
+
size_games_not_played = len(games_not_played)
|
45 |
+
|
46 |
+
data = {
|
47 |
+
'user-id': [user_id]* size_games_not_played,
|
48 |
+
'game-title': list(games_not_played),
|
49 |
+
'time-played': [0]* size_games_not_played
|
50 |
+
}
|
51 |
|
52 |
+
new_df = pd.DataFrame(data)
|
53 |
+
new_dl = learn.dls.test_dl(new_df)
|
54 |
+
predictions = learn.get_preds(dl=new_dl)
|
55 |
+
predicted_time_played = predictions[0].squeeze().tolist()
|
56 |
+
new_df['time-played'] = predicted_time_played
|
57 |
+
recomendations = new_df.sort_values(by='time-played', ascending=False).head(10)['game-title'].tolist()
|
58 |
+
st = [r + '\n' for r in recomendations]
|
59 |
|
60 |
+
ans = ''.join(st)
|
61 |
return ans
|
62 |
|
63 |
|
requirements.txt
CHANGED
@@ -1,65 +1,147 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
Jinja2==3.1.2
|
27 |
-
|
28 |
-
jsonschema
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
MarkupSafe==2.1.3
|
32 |
-
matplotlib==3.
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
python-dateutil==2.8.2
|
45 |
-
python-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
six==1.16.0
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
typer==0.9.0
|
61 |
-
|
|
|
62 |
tzdata==2023.3
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
apturl==0.5.2
|
2 |
+
attrs==21.2.0
|
3 |
+
blinker==1.4
|
4 |
+
blis==0.7.9
|
5 |
+
Brlapi==0.8.3
|
6 |
+
catalogue==2.0.8
|
7 |
+
certifi==2020.6.20
|
8 |
+
chardet==4.0.0
|
9 |
+
click==8.0.3
|
10 |
+
cmake==3.26.4
|
11 |
+
colorama==0.4.4
|
12 |
+
command-not-found==0.3
|
13 |
+
confection==0.1.0
|
14 |
+
contourpy==1.1.0
|
15 |
+
cryptography==3.4.8
|
16 |
+
cupshelpers==1.0
|
17 |
+
cycler==0.11.0
|
18 |
+
cymem==2.0.7
|
19 |
+
dbus-python==1.2.18
|
20 |
+
defer==1.0.6
|
21 |
+
distlib==0.3.4
|
22 |
+
distro==1.7.0
|
23 |
+
distro-info===1.1build1
|
24 |
+
docker==5.0.3
|
25 |
+
docker-compose==1.29.2
|
26 |
+
dockerpty==0.4.1
|
27 |
+
docopt==0.6.2
|
28 |
+
fastai==2.7.12
|
29 |
+
fastcore==1.5.29
|
30 |
+
fastdownload==0.0.7
|
31 |
+
fastprogress==1.0.3
|
32 |
+
filelock==3.6.0
|
33 |
+
fonttools==4.41.0
|
34 |
+
httplib2==0.20.2
|
35 |
+
idna==3.3
|
36 |
+
importlib-metadata==4.6.4
|
37 |
+
jeepney==0.7.1
|
38 |
Jinja2==3.1.2
|
39 |
+
joblib==1.3.1
|
40 |
+
jsonschema==3.2.0
|
41 |
+
keyring==23.5.0
|
42 |
+
kiwisolver==1.4.4
|
43 |
+
langcodes==3.3.0
|
44 |
+
language-selector==0.1
|
45 |
+
launchpadlib==1.10.16
|
46 |
+
lazr.restfulclient==0.14.4
|
47 |
+
lazr.uri==1.0.6
|
48 |
+
lit==16.0.6
|
49 |
+
louis==3.20.0
|
50 |
+
macaroonbakery==1.3.1
|
51 |
MarkupSafe==2.1.3
|
52 |
+
matplotlib==3.7.2
|
53 |
+
more-itertools==8.10.0
|
54 |
+
mpmath==1.3.0
|
55 |
+
murmurhash==1.0.9
|
56 |
+
netifaces==0.11.0
|
57 |
+
networkx==3.1
|
58 |
+
numpy==1.26.1
|
59 |
+
nvidia-cublas-cu11==11.10.3.66
|
60 |
+
nvidia-cuda-cupti-cu11==11.7.101
|
61 |
+
nvidia-cuda-nvrtc-cu11==11.7.99
|
62 |
+
nvidia-cuda-runtime-cu11==11.7.99
|
63 |
+
nvidia-cudnn-cu11==8.5.0.96
|
64 |
+
nvidia-cufft-cu11==10.9.0.58
|
65 |
+
nvidia-curand-cu11==10.2.10.91
|
66 |
+
nvidia-cusolver-cu11==11.4.0.1
|
67 |
+
nvidia-cusparse-cu11==11.7.4.91
|
68 |
+
nvidia-nccl-cu11==2.14.3
|
69 |
+
nvidia-nvtx-cu11==11.7.91
|
70 |
+
oauthlib==3.2.0
|
71 |
+
olefile==0.46
|
72 |
+
packaging==23.1
|
73 |
+
pandas==2.0.3
|
74 |
+
pandas-stubs==2.1.1.230928
|
75 |
+
pathy==0.10.2
|
76 |
+
pexpect==4.8.0
|
77 |
+
Pillow==9.0.1
|
78 |
+
platformdirs==2.5.1
|
79 |
+
preshed==3.0.8
|
80 |
+
protobuf==3.12.4
|
81 |
+
psutil==5.9.0
|
82 |
+
ptyprocess==0.7.0
|
83 |
+
pycairo==1.20.1
|
84 |
+
pycups==2.0.1
|
85 |
+
pydantic==1.10.11
|
86 |
+
Pygments==2.11.2
|
87 |
+
PyGObject==3.42.1
|
88 |
+
pyinotify==0.9.6
|
89 |
+
PyJWT==2.3.0
|
90 |
+
pymacaroons==0.13.0
|
91 |
+
PyNaCl==1.5.0
|
92 |
+
pyparsing==2.4.7
|
93 |
+
pyRFC3339==1.1
|
94 |
+
pyrsistent==0.18.1
|
95 |
+
python-apt==2.4.0+ubuntu1
|
96 |
python-dateutil==2.8.2
|
97 |
+
python-debian===0.1.43ubuntu1
|
98 |
+
python-dotenv==0.19.2
|
99 |
+
python-pam==1.8.4
|
100 |
+
python-xapp==2.2.1
|
101 |
+
python-xlib==0.29
|
102 |
+
pytz==2022.1
|
103 |
+
pyxdg==0.27
|
104 |
+
PyYAML==5.4.1
|
105 |
+
reportlab==3.6.8
|
106 |
+
requests==2.25.1
|
107 |
+
scikit-learn==1.3.0
|
108 |
+
scipy==1.11.1
|
109 |
+
screen-resolution-extra==0.0.0
|
110 |
+
SecretStorage==3.3.1
|
111 |
+
setproctitle==1.2.2
|
112 |
six==1.16.0
|
113 |
+
smart-open==6.3.0
|
114 |
+
spacy==3.6.0
|
115 |
+
spacy-legacy==3.0.12
|
116 |
+
spacy-loggers==1.0.4
|
117 |
+
srsly==2.4.6
|
118 |
+
ssh-import-id==5.11
|
119 |
+
sympy==1.12
|
120 |
+
systemd-python==234
|
121 |
+
texttable==1.6.4
|
122 |
+
thinc==8.1.10
|
123 |
+
threadpoolctl==3.2.0
|
124 |
+
tinycss==0.4
|
125 |
+
tinycss2==1.1.1
|
126 |
+
torch==2.0.1
|
127 |
+
torchvision==0.15.2
|
128 |
+
tqdm==4.65.0
|
129 |
+
triton==2.0.0
|
130 |
typer==0.9.0
|
131 |
+
types-pytz==2023.3.1.1
|
132 |
+
typing_extensions==4.7.1
|
133 |
tzdata==2023.3
|
134 |
+
ubuntu-advantage-tools==8001
|
135 |
+
ubuntu-drivers-common==0.0.0
|
136 |
+
ufw==0.36.1
|
137 |
+
unattended-upgrades==0.1
|
138 |
+
urllib3==1.26.5
|
139 |
+
virtualenv==20.13.0+ds
|
140 |
+
wadllib==1.3.6
|
141 |
+
wasabi==1.1.2
|
142 |
+
webencodings==0.5.1
|
143 |
+
websocket-client==1.2.3
|
144 |
+
xdg==5
|
145 |
+
xkit==0.0.0
|
146 |
+
xlrd==1.2.0
|
147 |
+
zipp==1.0.0
|