import gradio as gr import pandas as pd df_original = pd.read_csv('original.csv') df_predicted = pd.read_csv('predicted.csv') def load_examples(): st = [] for i in range(10): st.append(';'.join(map(str, df_original.iloc[i]))) return st examples = load_examples() def check_equal(original,predicted): percentage = 1 lower = original * (1 - percentage) upper = original * (1 + percentage) return (predicted >= lower and predicted <= upper) def predict(user_game_time): (user_id, game_name, time_played) = user_game_time.split(';') user_id = int(user_id) time_played_original = float(time_played) # Search query time_played_predicted = df_predicted[(df_predicted['user-id'] == user_id) & (df_predicted['game-title'] == game_name)].iloc[0,2] # Check right_predict = check_equal(time_played_original, time_played_predicted) equal = "Equal" if right_predict else "Not Equal" ans = f"Time original: {time_played_original}\n Time predicted: {time_played_predicted}\n They are equal: {equal}" return ans gr.Interface( fn=predict, inputs="text", outputs="text", examples=examples ).launch(share=False)