izhx commited on
Commit
98a2138
·
1 Parent(s): 92acaa5
Files changed (1) hide show
  1. app.py +17 -16
app.py CHANGED
@@ -150,9 +150,10 @@ def predict_zh(text: str) -> List:
150
  with gr.Blocks() as demo:
151
  gr.Markdown(
152
  """
153
- ## ChatGPT Detector 🔬 (Linguistic version)
 
154
  Visit our project on Github: [chatgpt-comparison-detection project](https://github.com/Hello-SimpleAI/chatgpt-comparison-detection)<br>
155
- 欢迎在 Github 上关注我们的 [ChatGPT 对比与检测项目](https://github.com/Hello-SimpleAI/chatgpt-comparison-detection)
156
  We provide three kinds of detectors, all in Bilingual / 我们提供了三个版本的检测器,且都支持中英文:
157
  - [QA version / 问答版](https://huggingface.co/spaces/Hello-SimpleAI/chatgpt-detector-qa)<br>
158
  detect whether an **answer** is generated by ChatGPT for certain **question**, using PLM-based classifiers / 判断某个**问题的回答**是否由ChatGPT生成,使用基于PTM的分类器来开发;
@@ -160,20 +161,6 @@ with gr.Blocks() as demo:
160
  detect whether a piece of text is ChatGPT generated, using PLM-based classifiers / 判断**单条文本**是否由ChatGPT生成,使用基于PTM的分类器来开发;
161
  - [**Linguistic version / 语言学版** (👈 Current / 当前使用)](https://huggingface.co/spaces/Hello-SimpleAI/chatgpt-detector-ling)<br>
162
  detect whether a piece of text is ChatGPT generated, using linguistic features / 判断**单条文本**是否由ChatGPT生成,使用基于语言学特征的模型来开发;
163
-
164
- ## Introduction:
165
- Two Logistic regression models trained with two kinds of features:
166
- 1. [GLTR](https://aclanthology.org/P19-3019) Test-2, Language model predict token rank top-k buckets, top 10, 10-100, 100-1000, 1000+.
167
- 2. PPL-based, text ppl, `avg` & `max` & `std` of sentence ppls, `avg` & `max` &`std` of timestep ppls.
168
-
169
- English LM is [GPT2-small](https://huggingface.co/gpt2).
170
-
171
- ## 介绍:
172
- 两个逻辑回归模型, 分别使用以下两种特征:
173
- 1. [GLTR](https://aclanthology.org/P19-3019) Test-2, 每个词的语言模型预测排名分桶, top 10, 10-100, 100-1000, 1000+.
174
- 2. 基于语言模型困惑度 (PPL), text ppl, `avg` & `max` & `std` of sentence ppls, `avg` & `max` &`std` of timestep ppls.
175
-
176
- 中文语言模型使用 闻仲 [Wenzhong-GPT2-110M](https://huggingface.co/IDEA-CCNL/Wenzhong-GPT2-110M).
177
 
178
  """
179
  )
@@ -181,6 +168,13 @@ with gr.Blocks() as demo:
181
  with gr.Tab("English"):
182
  gr.Markdown(
183
  """
 
 
 
 
 
 
 
184
  Note: Providing more text to the `Text` box can make the prediction more accurate!
185
  """
186
  )
@@ -199,6 +193,13 @@ with gr.Blocks() as demo:
199
  with gr.Tab("中文版"):
200
  gr.Markdown(
201
  """
 
 
 
 
 
 
 
202
  注意: 在`文本`栏中输入更多的文本,可以让预测更准确哦!
203
  """
204
  )
 
150
  with gr.Blocks() as demo:
151
  gr.Markdown(
152
  """
153
+ ## ChatGPT Detector 🔬 (Linguistic version / 语言学版)
154
+
155
  Visit our project on Github: [chatgpt-comparison-detection project](https://github.com/Hello-SimpleAI/chatgpt-comparison-detection)<br>
156
+ 欢迎在 Github 上关注我们的 [ChatGPT 对比与检测项目](https://github.com/Hello-SimpleAI/chatgpt-comparison-detection)<br>
157
  We provide three kinds of detectors, all in Bilingual / 我们提供了三个版本的检测器,且都支持中英文:
158
  - [QA version / 问答版](https://huggingface.co/spaces/Hello-SimpleAI/chatgpt-detector-qa)<br>
159
  detect whether an **answer** is generated by ChatGPT for certain **question**, using PLM-based classifiers / 判断某个**问题的回答**是否由ChatGPT生成,使用基于PTM的分类器来开发;
 
161
  detect whether a piece of text is ChatGPT generated, using PLM-based classifiers / 判断**单条文本**是否由ChatGPT生成,使用基于PTM的分类器来开发;
162
  - [**Linguistic version / 语言学版** (👈 Current / 当前使用)](https://huggingface.co/spaces/Hello-SimpleAI/chatgpt-detector-ling)<br>
163
  detect whether a piece of text is ChatGPT generated, using linguistic features / 判断**单条文本**是否由ChatGPT生成,使用基于语言学特征的模型来开发;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164
 
165
  """
166
  )
 
168
  with gr.Tab("English"):
169
  gr.Markdown(
170
  """
171
+ ## Introduction:
172
+ Two Logistic regression models trained with two kinds of features:
173
+ 1. [GLTR](https://aclanthology.org/P19-3019) Test-2, Language model predict token rank top-k buckets, top 10, 10-100, 100-1000, 1000+.
174
+ 2. PPL-based, text ppl, sentence ppl, etc.
175
+
176
+ English LM is [GPT2-small](https://huggingface.co/gpt2).
177
+
178
  Note: Providing more text to the `Text` box can make the prediction more accurate!
179
  """
180
  )
 
193
  with gr.Tab("中文版"):
194
  gr.Markdown(
195
  """
196
+ ## 介绍:
197
+ 两个逻辑回归模型, 分别使用以下两种特征:
198
+ 1. [GLTR](https://aclanthology.org/P19-3019) Test-2, 每个词的语言模型预测排名分桶, top 10, 10-100, 100-1000, 1000+.
199
+ 2. 基于语言模型困惑度 (PPL), 整个文本的PPL、单个句子的PPL等特征.
200
+
201
+ 中文语言模型使用 闻仲 [Wenzhong-GPT2-110M](https://huggingface.co/IDEA-CCNL/Wenzhong-GPT2-110M).
202
+
203
  注意: 在`文本`栏中输入更多的文本,可以让预测更准确哦!
204
  """
205
  )