ehristoforu's picture
Update main.py
348e14e
raw
history blame
9.88 kB
import gradio as gr
from fetch import get_values
from dotenv import load_dotenv
load_dotenv()
import prodia
import requests
import random
from datetime import datetime
import os
prodia_key = os.getenv('PRODIA_X_KEY', None)
if prodia_key is None:
print("Please set PRODIA_X_KEY in .env, closing...")
exit()
client = prodia.Client(api_key=prodia_key)
def process_input_text2img(prompt, negative_prompt, steps, cfg_scale, number, seed, model, sampler, aspect_ratio, upscale, save=False):
images = []
for image in range(number):
result = client.txt2img(prompt=prompt, negative_prompt=negative_prompt, model=model, sampler=sampler,
steps=steps, cfg_scale=cfg_scale, seed=seed, aspect_ratio=aspect_ratio, upscale=upscale)
images.append(result.url)
if save:
date = datetime.now()
if not os.path.isdir(f'./outputs/{date.year}-{date.month}-{date.day}'):
os.mkdir(f'./outputs/{date.year}-{date.month}-{date.day}')
img_data = requests.get(result.url).content
with open(f"./outputs/{date.year}-{date.month}-{date.day}/{random.randint(1, 10000000000000)}_{result.seed}.png", "wb") as f:
f.write(img_data)
return images
def process_input_img2img(init, prompt, negative_prompt, steps, cfg_scale, number, seed, model, sampler, ds, upscale, save):
images = []
for image in range(number):
result = client.img2img(imageUrl=init, prompt=prompt, negative_prompt=negative_prompt, model=model, sampler=sampler,
steps=steps, cfg_scale=cfg_scale, seed=seed, denoising_strength=ds, upscale=upscale)
images.append(result.url)
if save:
date = datetime.now()
if not os.path.isdir(f'./outputs/{date.year}-{date.month}-{date.day}'):
os.mkdir(f'./outputs/{date.year}-{date.month}-{date.day}')
img_data = requests.get(result.url).content
with open(f"./outputs/{date.year}-{date.month}-{date.day}/{random.randint(1, 10000000000000)}_{result.seed}.png", "wb") as f:
f.write(img_data)
return images
"""
def process_input_control(init, prompt, negative_prompt, steps, cfg_scale, number, seed, model, control_model, sampler):
images = []
for image in range(number):
result = client.controlnet(imageUrl=init, prompt=prompt, negative_prompt=negative_prompt, model=model, sampler=sampler,
steps=steps, cfg_scale=cfg_scale, seed=seed, controlnet_model=control_model)
images.append(result.url)
return images
"""
theme = "Base"
with gr.Blocks(theme=theme) as demo:
gr.Markdown("""
# ForgeStudio Large
<p></p>
""")
with gr.Accordion("🆔 Account", open=False):
with gr.Row():
gr.LoginButton(size="sm")
gr.LogoutButton(size="sm")
gr.DuplicateButton(value="Duplicate space for private use")
with gr.Tab(label="txt2img"):
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", lines=2, placeholder="beautiful cat, 8k")
negative = gr.Textbox(label="Negative Prompt", lines=3, value="text, blurry, fuzziness", placeholder="Add words you don't want to show up in your art...")
with gr.Row():
steps = gr.Slider(label="Steps", value=25, step=1, maximum=50, minimum=5, interactive=True)
cfg = gr.Slider(label="CFG Scale", maximum=20, minimum=1, value=7, interactive=True, info="Recommended 7 CFG Scale")
with gr.Row():
num = gr.Slider(label="Number of images", value=1, step=1, maximum=4, minimum=1, interactive=True)
seed = gr.Slider(label="Seed", value=-1, step=1, minimum=-1, maximum=4294967295, interactive=True, info="""'-1' is a random seed""")
with gr.Row():
model = gr.Dropdown(label="Model", choices=get_values()[0], value="v1-5-pruned-emaonly.ckpt [81761151]", interactive=True)
sampler = gr.Dropdown(label="Sampler", choices=get_values()[1], value="DPM++ SDE Karras", interactive=True)
with gr.Row():
ar = gr.Radio(label="Aspect Ratio", choices=["square", "portrait", "landscape"], value="square", interactive=True)
with gr.Column():
upscale = gr.Checkbox(label="upscale", value=True, interactive=True, info="""'True' recommended, improves image quality""")
with gr.Row():
run_btn = gr.Button("Generate", variant="primary")
with gr.Column():
result_image = gr.Gallery(label="Result Image(s)", show_download_button=False, show_share_button=True)
with gr.Accordion("📑 Examples", open=False):
with gr.Row():
gr.Examples(
examples=[
["A high tech solarpunk utopia in the Amazon rainforest"],
["A pikachu fine dining with a view to the Eiffel Tower"],
["A mecha robot in a favela in expressionist style"],
["an insect robot preparing a delicious meal"],
["A small cabin on top of a snowy mountain in the style of Disney, artstation"]
],
inputs=[prompt],
cache_examples=False,
)
run_btn.click(
process_input_text2img,
inputs=[
prompt,
negative,
steps,
cfg,
num,
seed,
model,
sampler,
ar,
upscale
],
outputs=[result_image],
)
with gr.Tab(label="img2img"):
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", lines=2, placeholder="beautiful cat, 8k")
with gr.Row():
negative = gr.Textbox(label="Negative Prompt", lines=3, placeholder="Add words you don't want to show up in your art...")
gr.Markdown("""
<p></p>
⚠️ Attention, only images generated by ForgeStudio Large are accepted, that is, first generate an image in the txt2img section, and then insert a link to this image in the Init Image URL, for example: https://images.prodia.xyz/image.png
""")
init_image = gr.Textbox(label="Init Image Url", lines=3, placeholder="https://images.prodia.xyz/d372060f-673d-486d-b3a8-f2c8a33f25f3.png")
with gr.Row():
steps = gr.Slider(label="Steps", value=25, step=1, maximum=50, minimum=1, interactive=True)
cfg = gr.Slider(label="CFG Scale", maximum=20, minimum=1, value=7, interactive=True, info="Recommended 7 CFG Scale")
with gr.Row():
num = gr.Slider(label="Number of images", value=1, step=1, maximum=4, minimum=1, interactive=True)
seed = gr.Slider(label="Seed", value=-1, step=1, minimum=-1, maximum=4294967295, interactive=True, info="""'-1' is a random seed""")
with gr.Row():
model = gr.Dropdown(label="Model", choices=get_values()[0], value="v1-5-pruned-emaonly.ckpt [81761151]", interactive=True)
sampler = gr.Dropdown(label="Sampler", choices=get_values()[1], value="DPM++ 2M Karras", interactive=True)
with gr.Row():
ds = gr.Slider(label="Denoising strength", maximum=0.9, minimum=0.1, value=0.5, interactive=True)
with gr.Column():
upscale = gr.Checkbox(label="upscale", value=True, interactive=True, info="""'True' recommended, improves image quality""")
with gr.Row():
run_btn = gr.Button("Generate", variant="primary")
with gr.Column():
result_image = gr.Gallery(label="Result Image(s)")
run_btn.click(
process_input_img2img,
inputs=[
init_image,
prompt,
negative,
steps,
cfg,
num,
seed,
model,
sampler,
ds,
upscale
],
outputs=[result_image],
)
with gr.Tab(label="Others"):
with gr.Tab(label="Image Tools"):
with gr.Accordion("Remove Background", open=False):
with gr.Row():
gr.load("hardon-server/remove-background-on-image-def", src="spaces")
with gr.Accordion("Flip Image", open=False):
with gr.Row():
gr.load("hardon-server/image_flip", src="spaces")
with gr.Accordion("Sepia Filter", open=False):
with gr.Row():
gr.load("hardon-server/sepia_filter", src="spaces")
with gr.Tab(label="GANs"):
with gr.Accordion("RANGAN", open=False):
with gr.Row():
gr.load("hardon-server/projected_gan1", src="spaces")
with gr.Tab(label="Gallery"):
gr.load("nateraw/stable_diffusion_gallery", src="spaces")
with gr.Tab(label="License"):
gr.load("4com/4com-license", src="spaces")
if __name__ == "__main__":
demo.launch(show_api=False, enable_queue=False, debug=False, share=False, show_error=False)