Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,41 +6,26 @@ from optimum.intel.openvino import OVStableDiffusionPipeline
|
|
6 |
import torch
|
7 |
|
8 |
|
9 |
-
|
10 |
-
|
11 |
model_id = "helenai/Linaqruf-anything-v3.0-ov"
|
12 |
|
13 |
pipe = OVStableDiffusionPipeline.from_pretrained(model_id, compile=False)
|
14 |
pipe.reshape( batch_size=1, height=256, width=256, num_images_per_prompt=1)
|
15 |
pipe.compile()
|
16 |
|
|
|
17 |
|
18 |
-
|
19 |
-
MAX_SEED = np.iinfo(np.int32).max
|
20 |
-
MAX_IMAGE_SIZE = 256
|
21 |
-
|
22 |
-
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
23 |
-
|
24 |
-
#if randomize_seed:
|
25 |
-
# seed = random.randint(0, MAX_SEED)
|
26 |
-
|
27 |
-
#generator = torch.Generator().manual_seed(seed)
|
28 |
-
|
29 |
image = pipe(
|
30 |
prompt = prompt,
|
31 |
negative_prompt = negative_prompt,
|
32 |
-
|
33 |
-
|
34 |
-
width = width,
|
35 |
-
height = height,
|
36 |
-
#generator = generator
|
37 |
).images[0]
|
38 |
|
39 |
return image
|
40 |
|
41 |
examples = [
|
42 |
-
"
|
43 |
-
"
|
44 |
"A delicious ceviche cheesecake slice",
|
45 |
]
|
46 |
|
@@ -76,61 +61,6 @@ with gr.Blocks(css=css) as demo:
|
|
76 |
|
77 |
result = gr.Image(label="Result", show_label=False)
|
78 |
|
79 |
-
with gr.Accordion("Advanced Settings", open=False):
|
80 |
-
|
81 |
-
negative_prompt = gr.Text(
|
82 |
-
label="Negative prompt",
|
83 |
-
max_lines=1,
|
84 |
-
placeholder="Enter a negative prompt",
|
85 |
-
visible=False,
|
86 |
-
)
|
87 |
-
|
88 |
-
seed = gr.Slider(
|
89 |
-
label="Seed",
|
90 |
-
minimum=0,
|
91 |
-
maximum=MAX_SEED,
|
92 |
-
step=1,
|
93 |
-
value=0,
|
94 |
-
)
|
95 |
-
|
96 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
97 |
-
|
98 |
-
with gr.Row():
|
99 |
-
|
100 |
-
width = gr.Slider(
|
101 |
-
label="Width",
|
102 |
-
minimum=256,
|
103 |
-
maximum=MAX_IMAGE_SIZE,
|
104 |
-
step=32,
|
105 |
-
value=256,
|
106 |
-
)
|
107 |
-
|
108 |
-
height = gr.Slider(
|
109 |
-
label="Height",
|
110 |
-
minimum=256,
|
111 |
-
maximum=MAX_IMAGE_SIZE,
|
112 |
-
step=32,
|
113 |
-
value=256,
|
114 |
-
)
|
115 |
-
|
116 |
-
with gr.Row():
|
117 |
-
|
118 |
-
guidance_scale = gr.Slider(
|
119 |
-
label="Guidance scale",
|
120 |
-
minimum=0.0,
|
121 |
-
maximum=10.0,
|
122 |
-
step=0.1,
|
123 |
-
value=3.0,
|
124 |
-
)
|
125 |
-
|
126 |
-
num_inference_steps = gr.Slider(
|
127 |
-
label="Number of inference steps",
|
128 |
-
minimum=1,
|
129 |
-
maximum=25,
|
130 |
-
step=1,
|
131 |
-
value=25,
|
132 |
-
)
|
133 |
-
|
134 |
gr.Examples(
|
135 |
examples = examples,
|
136 |
inputs = [prompt]
|
@@ -138,7 +68,7 @@ with gr.Blocks(css=css) as demo:
|
|
138 |
|
139 |
run_button.click(
|
140 |
fn = infer,
|
141 |
-
inputs = [prompt, negative_prompt
|
142 |
outputs = [result]
|
143 |
)
|
144 |
|
|
|
6 |
import torch
|
7 |
|
8 |
|
|
|
|
|
9 |
model_id = "helenai/Linaqruf-anything-v3.0-ov"
|
10 |
|
11 |
pipe = OVStableDiffusionPipeline.from_pretrained(model_id, compile=False)
|
12 |
pipe.reshape( batch_size=1, height=256, width=256, num_images_per_prompt=1)
|
13 |
pipe.compile()
|
14 |
|
15 |
+
def infer(prompt, negative_prompt):
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
image = pipe(
|
18 |
prompt = prompt,
|
19 |
negative_prompt = negative_prompt,
|
20 |
+
width = 256,
|
21 |
+
height = 256,
|
|
|
|
|
|
|
22 |
).images[0]
|
23 |
|
24 |
return image
|
25 |
|
26 |
examples = [
|
27 |
+
"A cute kitten, Japanese cartoon style.",
|
28 |
+
"A sweet family, dad stands next to mom, mom holds baby girl.",
|
29 |
"A delicious ceviche cheesecake slice",
|
30 |
]
|
31 |
|
|
|
61 |
|
62 |
result = gr.Image(label="Result", show_label=False)
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
gr.Examples(
|
65 |
examples = examples,
|
66 |
inputs = [prompt]
|
|
|
68 |
|
69 |
run_button.click(
|
70 |
fn = infer,
|
71 |
+
inputs = [prompt, negative_prompt],
|
72 |
outputs = [result]
|
73 |
)
|
74 |
|