import gradio as gr from fastcore.all import * from fastai.vision.all import * from fastai.vision.widgets import * import pickle import torch def label_func (f): return f[:2] !="1 " Pkl_Filename = "learner.pkl" with open(Pkl_Filename, 'rb') as file: learn = torch.load ( file , map_location=torch.device('cpu') ) category = ("Waifu" , "Human") def infer_im (im ) : pre , idx , prob = learn.predict (im) flo_prob = list ( map (float , prob) )[0] return dict ( zip (category , ( flo_prob , 1 - flo_prob ) ) ) examples = ["1 (1004).jpg", "498970d2f45988eae9d6a2eb59bc450f.jpg" , "10010892_result.jpg" , "10019581_result.jpg"] gr.Interface(fn= infer_im, inputs=gr.inputs.Image(shape=(128 , 128)), outputs=gr.outputs.Label(num_top_classes=2) , examples = examples ).launch(inline = False)