|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
|
|
|
|
batch_size = 32 |
|
block_size = 8 |
|
max_iters = 3000 |
|
eval_interval = 300 |
|
learning_rate = 1e-2 |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
eval_iters = 200 |
|
|
|
|
|
torch.manual_seed(1337) |
|
|
|
|
|
with open('input.txt', 'r', encoding='utf-8') as f: |
|
text = f.read() |
|
|
|
|
|
chars = sorted(list(set(text))) |
|
vocab_size = len(chars) |
|
|
|
stoi = { ch:i for i,ch in enumerate(chars) } |
|
itos = { i:ch for i,ch in enumerate(chars) } |
|
encode = lambda s: [stoi[c] for c in s] |
|
decode = lambda l: ''.join([itos[i] for i in l]) |
|
|
|
|
|
data = torch.tensor(encode(text), dtype=torch.long) |
|
n = int(0.9*len(data)) |
|
train_data = data[:n] |
|
val_data = data[n:] |
|
|
|
|
|
def get_batch(split): |
|
|
|
data = train_data if split == 'train' else val_data |
|
ix = torch.randint(len(data) - block_size, (batch_size,)) |
|
x = torch.stack([data[i:i+block_size] for i in ix]) |
|
y = torch.stack([data[i+1:i+block_size+1] for i in ix]) |
|
x, y = x.to(device), y.to(device) |
|
return x, y |
|
|
|
@torch.no_grad() |
|
def estimate_loss(): |
|
out = {} |
|
model.eval() |
|
for split in ['train', 'val']: |
|
losses = torch.zeros(eval_iters) |
|
for k in range(eval_iters): |
|
X, Y = get_batch(split) |
|
logits, loss = model(X, Y) |
|
losses[k] = loss.item() |
|
out[split] = losses.mean() |
|
model.train() |
|
return out |
|
|
|
|
|
class BigramLanguageModel(nn.Module): |
|
|
|
def __init__(self, vocab_size): |
|
super().__init__() |
|
|
|
self.token_embedding_table = nn.Embedding(vocab_size, vocab_size) |
|
|
|
def forward(self, idx, targets=None): |
|
|
|
|
|
logits = self.token_embedding_table(idx) |
|
|
|
if targets is None: |
|
loss = None |
|
else: |
|
B, T, C = logits.shape |
|
logits = logits.view(B*T, C) |
|
targets = targets.view(B*T) |
|
loss = F.cross_entropy(logits, targets) |
|
|
|
return logits, loss |
|
|
|
def generate(self, idx, max_new_tokens): |
|
|
|
for _ in range(max_new_tokens): |
|
|
|
logits, loss = self(idx) |
|
|
|
logits = logits[:, -1, :] |
|
|
|
probs = F.softmax(logits, dim=-1) |
|
|
|
idx_next = torch.multinomial(probs, num_samples=1) |
|
|
|
idx = torch.cat((idx, idx_next), dim=1) |
|
return idx |
|
|
|
model = BigramLanguageModel(vocab_size) |
|
m = model.to(device) |
|
|
|
|
|
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate) |
|
|
|
for iter in range(max_iters): |
|
|
|
|
|
if iter % eval_interval == 0: |
|
losses = estimate_loss() |
|
print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}") |
|
|
|
|
|
xb, yb = get_batch('train') |
|
|
|
|
|
logits, loss = model(xb, yb) |
|
optimizer.zero_grad(set_to_none=True) |
|
loss.backward() |
|
optimizer.step() |
|
|
|
|
|
context = torch.zeros((1, 1), dtype=torch.long, device=device) |
|
print(decode(m.generate(context, max_new_tokens=500)[0].tolist())) |
|
|