File size: 6,485 Bytes
5109f6e e2d159d d114adc e2d159d 5109f6e e2d159d 5109f6e e2d159d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import gradio as gr
import time
import os
import glob
import textwrap
from transformers import (
AutoTokenizer, AutoModelForCausalLM,
BitsAndBytesConfig,
pipeline
)
from langchain.document_loaders import PyPDFLoader, DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.llms import HuggingFacePipeline
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
# Configuration class
class CFG:
# LLMs
model_name = 'llama2-13b-chat' # wizardlm, llama2-7b-chat, llama2-13b-chat, mistral-7B
temperature = 0
top_p = 0.95
repetition_penalty = 1.15
# splitting
split_chunk_size = 800
split_overlap = 0
# embeddings
embeddings_model_repo = 'sentence-transformers/all-MiniLM-L6-v2'
# similar passages
k = 6
# paths
PDFs_path = './' # Set to your PDF path
Embeddings_path = './faiss-hp-sentence-transformers'
Output_folder = './rag-vectordb'
# Set preferred encoding to UTF-8 (for non-ASCII characters)
import locale
locale.getpreferredencoding = lambda: "UTF-8"
# Function to get model
def get_model(model = CFG.model_name):
print('\nDownloading model: ', model, '\n\n')
if model == 'wizardlm':
model_repo = 'TheBloke/wizardLM-7B-HF'
tokenizer = AutoTokenizer.from_pretrained(model_repo)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
)
model = AutoModelForCausalLM.from_pretrained(
model_repo,
quantization_config=bnb_config,
device_map='auto',
low_cpu_mem_usage=True
)
max_len = 1024
elif model == 'llama2-7b-chat':
model_repo = 'daryl149/llama-2-7b-chat-hf'
tokenizer = AutoTokenizer.from_pretrained(model_repo, use_fast=True)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
)
model = AutoModelForCausalLM.from_pretrained(
model_repo,
quantization_config=bnb_config,
device_map='auto',
low_cpu_mem_usage=True,
trust_remote_code=True
)
max_len = 2048
elif model == 'llama2-13b-chat':
model_repo = 'daryl149/llama-2-13b-chat-hf'
tokenizer = AutoTokenizer.from_pretrained(model_repo, use_fast=True)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
)
model = AutoModelForCausalLM.from_pretrained(
model_repo,
quantization_config=bnb_config,
low_cpu_mem_usage=True,
trust_remote_code=True
)
max_len = 2048
else:
print("Model not implemented!")
return tokenizer, model, max_len
# Get the model
tokenizer, model, max_len = get_model(CFG.model_name)
# Set up Hugging Face pipeline
pipe = pipeline(
task="text-generation",
model=model,
tokenizer=tokenizer,
pad_token_id=tokenizer.eos_token_id,
max_length=max_len,
temperature=CFG.temperature,
top_p=CFG.top_p,
repetition_penalty=CFG.repetition_penalty
)
# Langchain pipeline
llm = HuggingFacePipeline(pipeline=pipe)
# Load the documents
loader = DirectoryLoader(
CFG.PDFs_path,
glob="./*.pdf",
loader_cls=PyPDFLoader,
show_progress=True,
use_multithreading=True
)
documents = loader.load()
# Split the documents
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=CFG.split_chunk_size,
chunk_overlap=CFG.split_overlap
)
texts = text_splitter.split_documents(documents)
# Set up vector store
vectordb = FAISS.from_documents(
texts,
HuggingFaceInstructEmbeddings(model_name=CFG.embeddings_model_repo)
)
# Save the vector store
vectordb.save_local(f"{CFG.Output_folder}/faiss_index_rag")
# Define the prompt template
prompt_template = """
Don't try to make up an answer, if you don't know just say that you don't know.
Answer in the same language the question was asked.
Use only the following pieces of context to answer the question at the end.
{context}
Question: {question}
Answer:"""
PROMPT = PromptTemplate(
template=prompt_template,
input_variables=["context", "question"]
)
# Set up retriever
retriever = vectordb.as_retriever(search_kwargs={"k": CFG.k, "search_type": "similarity"})
# Create the retrieval-based QA chain
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff", # other options: "map_reduce", "map_rerank", "refine"
retriever=retriever,
chain_type_kwargs={"prompt": PROMPT},
return_source_documents=True,
verbose=False
)
# Function to wrap text for proper display
def wrap_text_preserve_newlines(text, width=700):
lines = text.split('\n')
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
wrapped_text = '\n'.join(wrapped_lines)
return wrapped_text
# Function to process model response
def process_llm_response(llm_response):
ans = wrap_text_preserve_newlines(llm_response['result'])
sources_used = ' \n'.join(
[
source.metadata['source'].split('/')[-1][:-4]
+ ' - page: '
+ str(source.metadata['page'])
for source in llm_response['source_documents']
]
)
ans = ans + '\n\nSources: \n' + sources_used
return ans
# Function to get the answer from the model
def llm_ans(query):
start = time.time()
llm_response = qa_chain.invoke(query)
ans = process_llm_response(llm_response)
end = time.time()
time_elapsed = int(round(end - start, 0))
time_elapsed_str = f'\n\nTime elapsed: {time_elapsed} s'
return ans + time_elapsed_str
# Function for Gradio chat interface
def predict(message, history):
output = str(llm_ans(message)).replace("\n", "<br/>")
return output
# Set up Gradio interface
demo = gr.ChatInterface(
fn=predict,
title=f'Open-Source LLM ({CFG.model_name}) Question Answering'
)
# Start the Gradio interface
demo.queue()
demo.launch()
|