File size: 6,485 Bytes
5109f6e
e2d159d
 
 
 
d114adc
e2d159d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5109f6e
 
e2d159d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5109f6e
e2d159d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import gradio as gr
import time
import os
import glob
import textwrap

from transformers import (
    AutoTokenizer, AutoModelForCausalLM,
    BitsAndBytesConfig,
    pipeline
)
from langchain.document_loaders import PyPDFLoader, DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.llms import HuggingFacePipeline
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate

# Configuration class
class CFG:
    # LLMs
    model_name = 'llama2-13b-chat'  # wizardlm, llama2-7b-chat, llama2-13b-chat, mistral-7B
    temperature = 0
    top_p = 0.95
    repetition_penalty = 1.15

    # splitting
    split_chunk_size = 800
    split_overlap = 0

    # embeddings
    embeddings_model_repo = 'sentence-transformers/all-MiniLM-L6-v2'

    # similar passages
    k = 6

    # paths
    PDFs_path = './'  # Set to your PDF path
    Embeddings_path = './faiss-hp-sentence-transformers'
    Output_folder = './rag-vectordb'

# Set preferred encoding to UTF-8 (for non-ASCII characters)
import locale
locale.getpreferredencoding = lambda: "UTF-8"

# Function to get model
def get_model(model = CFG.model_name):
    print('\nDownloading model: ', model, '\n\n')
    
    if model == 'wizardlm':
        model_repo = 'TheBloke/wizardLM-7B-HF'

        tokenizer = AutoTokenizer.from_pretrained(model_repo)
        bnb_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_use_double_quant=True,
        )

        model = AutoModelForCausalLM.from_pretrained(
            model_repo,
            quantization_config=bnb_config,
            device_map='auto',
            low_cpu_mem_usage=True
        )

        max_len = 1024

    elif model == 'llama2-7b-chat':
        model_repo = 'daryl149/llama-2-7b-chat-hf'
        tokenizer = AutoTokenizer.from_pretrained(model_repo, use_fast=True)

        bnb_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_use_double_quant=True,
        )

        model = AutoModelForCausalLM.from_pretrained(
            model_repo,
            quantization_config=bnb_config,
            device_map='auto',
            low_cpu_mem_usage=True,
            trust_remote_code=True
        )

        max_len = 2048

    elif model == 'llama2-13b-chat':
        model_repo = 'daryl149/llama-2-13b-chat-hf'
        tokenizer = AutoTokenizer.from_pretrained(model_repo, use_fast=True)

        bnb_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_use_double_quant=True,
        )

        model = AutoModelForCausalLM.from_pretrained(
            model_repo,
            quantization_config=bnb_config,
            low_cpu_mem_usage=True,
            trust_remote_code=True
        )

        max_len = 2048

    else:
        print("Model not implemented!")

    return tokenizer, model, max_len

# Get the model
tokenizer, model, max_len = get_model(CFG.model_name)

# Set up Hugging Face pipeline
pipe = pipeline(
    task="text-generation",
    model=model,
    tokenizer=tokenizer,
    pad_token_id=tokenizer.eos_token_id,
    max_length=max_len,
    temperature=CFG.temperature,
    top_p=CFG.top_p,
    repetition_penalty=CFG.repetition_penalty
)

# Langchain pipeline
llm = HuggingFacePipeline(pipeline=pipe)

# Load the documents
loader = DirectoryLoader(
    CFG.PDFs_path,
    glob="./*.pdf",
    loader_cls=PyPDFLoader,
    show_progress=True,
    use_multithreading=True
)
documents = loader.load()

# Split the documents
text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=CFG.split_chunk_size,
    chunk_overlap=CFG.split_overlap
)
texts = text_splitter.split_documents(documents)

# Set up vector store
vectordb = FAISS.from_documents(
    texts,
    HuggingFaceInstructEmbeddings(model_name=CFG.embeddings_model_repo)
)

# Save the vector store
vectordb.save_local(f"{CFG.Output_folder}/faiss_index_rag")

# Define the prompt template
prompt_template = """
Don't try to make up an answer, if you don't know just say that you don't know.
Answer in the same language the question was asked.
Use only the following pieces of context to answer the question at the end.

{context}

Question: {question}
Answer:"""

PROMPT = PromptTemplate(
    template=prompt_template,
    input_variables=["context", "question"]
)

# Set up retriever
retriever = vectordb.as_retriever(search_kwargs={"k": CFG.k, "search_type": "similarity"})

# Create the retrieval-based QA chain
qa_chain = RetrievalQA.from_chain_type(
    llm=llm,
    chain_type="stuff",  # other options: "map_reduce", "map_rerank", "refine"
    retriever=retriever,
    chain_type_kwargs={"prompt": PROMPT},
    return_source_documents=True,
    verbose=False
)

# Function to wrap text for proper display
def wrap_text_preserve_newlines(text, width=700):
    lines = text.split('\n')
    wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
    wrapped_text = '\n'.join(wrapped_lines)
    return wrapped_text

# Function to process model response
def process_llm_response(llm_response):
    ans = wrap_text_preserve_newlines(llm_response['result'])
    sources_used = ' \n'.join(
        [
            source.metadata['source'].split('/')[-1][:-4]
            + ' - page: '
            + str(source.metadata['page'])
            for source in llm_response['source_documents']
        ]
    )
    ans = ans + '\n\nSources: \n' + sources_used
    return ans

# Function to get the answer from the model
def llm_ans(query):
    start = time.time()
    llm_response = qa_chain.invoke(query)
    ans = process_llm_response(llm_response)
    end = time.time()

    time_elapsed = int(round(end - start, 0))
    time_elapsed_str = f'\n\nTime elapsed: {time_elapsed} s'
    return ans + time_elapsed_str

# Function for Gradio chat interface
def predict(message, history):
    output = str(llm_ans(message)).replace("\n", "<br/>")
    return output

# Set up Gradio interface
demo = gr.ChatInterface(
    fn=predict,
    title=f'Open-Source LLM ({CFG.model_name}) Question Answering'
)

# Start the Gradio interface
demo.queue()
demo.launch()