TextTrail / texttrail.py
HemaMeena's picture
Upload texttrail.py
4d46aa9 verified
raw
history blame
9.74 kB
# -*- coding: utf-8 -*-
"""TextTrail.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/19FMO4hPcBUvq4whuvATRRXDxJ4ONqElV
"""
! nvidia-smi -L
# Commented out IPython magic to ensure Python compatibility.
# %%time
#
# from IPython.display import clear_output
#
# ! pip install sentence_transformers==2.2.2
#
# ! pip install -qq -U langchain-community
# ! pip install -U langchain-huggingface
# ! pip install -qq -U tiktoken
# ! pip install -qq -U pypdf
# ! pip install -qq -U faiss-gpu
# ! pip install -qq -U InstructorEmbedding
#
# ! pip install -qq -U transformers
# ! pip install -qq -U accelerate
# ! pip install -qq -U bitsandbytes
#
# clear_output()
# Commented out IPython magic to ensure Python compatibility.
# %%time
#
# import warnings
# warnings.filterwarnings("ignore")
#
# import os
# import glob
# import textwrap
# import time
#
# import langchain
#
# ### loaders
# from langchain.document_loaders import PyPDFLoader, DirectoryLoader
#
# ### splits
# from langchain.text_splitter import RecursiveCharacterTextSplitter
#
# ### prompts
# from langchain import PromptTemplate, LLMChain
#
# ### vector stores
# from langchain.vectorstores import FAISS
#
# ### models
# from langchain.llms import HuggingFacePipeline
# from langchain.embeddings import HuggingFaceInstructEmbeddings
#
# ### retrievers
# from langchain.chains import RetrievalQA
#
# import torch
# import transformers
# from transformers import (
# AutoTokenizer, AutoModelForCausalLM,
# BitsAndBytesConfig,
# pipeline
# )
#
# clear_output()
sorted(glob.glob('/content/anatomy_vol_*'))
class CFG:
# LLMs
model_name = 'llama2-13b-chat' # wizardlm, llama2-7b-chat, llama2-13b-chat, mistral-7B
temperature = 0
top_p = 0.95
repetition_penalty = 1.15
# splitting
split_chunk_size = 800
split_overlap = 0
# embeddings
embeddings_model_repo = 'sentence-transformers/all-MiniLM-L6-v2'
# similar passages
k = 6
# paths
PDFs_path = '/content/'
Embeddings_path = '/content/faiss-hp-sentence-transformers'
Output_folder = './rag-vectordb'
def get_model(model = CFG.model_name):
print('\nDownloading model: ', model, '\n\n')
if model == 'wizardlm':
model_repo = 'TheBloke/wizardLM-7B-HF'
tokenizer = AutoTokenizer.from_pretrained(model_repo)
bnb_config = BitsAndBytesConfig(
load_in_4bit = True,
bnb_4bit_quant_type = "nf4",
bnb_4bit_compute_dtype = torch.float16,
bnb_4bit_use_double_quant = True,
)
model = AutoModelForCausalLM.from_pretrained(
model_repo,
quantization_config = bnb_config,
device_map = 'auto',
low_cpu_mem_usage = True
)
max_len = 1024
elif model == 'llama2-7b-chat':
model_repo = 'daryl149/llama-2-7b-chat-hf'
tokenizer = AutoTokenizer.from_pretrained(model_repo, use_fast=True)
bnb_config = BitsAndBytesConfig(
load_in_4bit = True,
bnb_4bit_quant_type = "nf4",
bnb_4bit_compute_dtype = torch.float16,
bnb_4bit_use_double_quant = True,
)
model = AutoModelForCausalLM.from_pretrained(
model_repo,
quantization_config = bnb_config,
device_map = 'auto',
low_cpu_mem_usage = True,
trust_remote_code = True
)
max_len = 2048
elif model == 'llama2-13b-chat':
model_repo = 'daryl149/llama-2-13b-chat-hf'
tokenizer = AutoTokenizer.from_pretrained(model_repo, use_fast=True)
bnb_config = BitsAndBytesConfig(
load_in_4bit = True,
bnb_4bit_quant_type = "nf4",
bnb_4bit_compute_dtype = torch.float16,
bnb_4bit_use_double_quant = True,
)
model = AutoModelForCausalLM.from_pretrained(
model_repo,
quantization_config = bnb_config,
low_cpu_mem_usage = True,
trust_remote_code = True
)
max_len = 2048 #8192
truncation=True, # Explicitly enable truncation
padding="max_len" # Optional: pad to max_length
elif model == 'mistral-7B':
model_repo = 'mistralai/Mistral-7B-v0.1'
tokenizer = AutoTokenizer.from_pretrained(model_repo)
bnb_config = BitsAndBytesConfig(
load_in_4bit = True,
bnb_4bit_quant_type = "nf4",
bnb_4bit_compute_dtype = torch.float16,
bnb_4bit_use_double_quant = True,
)
model = AutoModelForCausalLM.from_pretrained(
model_repo,
quantization_config = bnb_config,
device_map = 'auto',
low_cpu_mem_usage = True,
)
max_len = 1024
else:
print("Not implemented model (tokenizer and backbone)")
return tokenizer, model, max_len
print(torch.cuda.is_available())
print(torch.cuda.device_count())
# Commented out IPython magic to ensure Python compatibility.
# %%time
#
# tokenizer, model, max_len = get_model(model = CFG.model_name)
#
# clear_output()
model.eval()
### check how Accelerate split the model across the available devices (GPUs)
model.hf_device_map
### hugging face pipeline
pipe = pipeline(
task = "text-generation",
model = model,
tokenizer = tokenizer,
pad_token_id = tokenizer.eos_token_id,
# do_sample = True,
max_length = max_len,
temperature = CFG.temperature,
top_p = CFG.top_p,
repetition_penalty = CFG.repetition_penalty
)
### langchain pipeline
llm = HuggingFacePipeline(pipeline = pipe)
llm
query = "what are the structural organization of a human body"
llm.invoke(query)
"""Langchain"""
CFG.model_name
"""Loader"""
# Commented out IPython magic to ensure Python compatibility.
# %%time
#
# loader = DirectoryLoader(
# CFG.PDFs_path,
# glob="./*.pdf",
# loader_cls=PyPDFLoader,
# show_progress=True,
# use_multithreading=True
# )
#
# documents = loader.load()
print(f'We have {len(documents)} pages in total')
documents[8].page_content
"""Splitter"""
text_splitter = RecursiveCharacterTextSplitter(
chunk_size = CFG.split_chunk_size,
chunk_overlap = CFG.split_overlap
)
texts = text_splitter.split_documents(documents)
print(f'We have created {len(texts)} chunks from {len(documents)} pages')
"""Create Embeddings"""
# Commented out IPython magic to ensure Python compatibility.
# %%time
# from langchain.embeddings.huggingface import HuggingFaceEmbeddings
#
# vectordb = FAISS.from_documents(
# texts,
# HuggingFaceEmbeddings(model_name='sentence-transformers/all-mpnet-base-v2')
# )
#
# ### persist vector database
# vectordb.save_local(f"{CFG.Output_folder}/faiss_index_rag") # save in output folder
# # vectordb.save_local(f"{CFG.Embeddings_path}/faiss_index_hp") # save in input folder
#
# clear_output()
"""Prompt Template"""
prompt_template = """
Don't try to make up an answer, if you don't know just say that you don't know.
Answer in the same language the question was asked.
Use only the following pieces of context to answer the question at the end.
{context}
Question: {question}
Answer:"""
PROMPT = PromptTemplate(
template = prompt_template,
input_variables = ["context", "question"]
)
"""Retriever chain"""
retriever = vectordb.as_retriever(search_kwargs = {"k": CFG.k, "search_type" : "similarity"})
qa_chain = RetrievalQA.from_chain_type(
llm = llm,
chain_type = "stuff", # map_reduce, map_rerank, stuff, refine
retriever = retriever,
chain_type_kwargs = {"prompt": PROMPT},
return_source_documents = True,
verbose = False
)
question = "what are the structural organization of a human body"
vectordb.max_marginal_relevance_search(question, k = CFG.k)
### testing similarity search
question = "what are the structural organization of a human body"
vectordb.similarity_search(question, k = CFG.k)
"""Post-process outputs"""
def wrap_text_preserve_newlines(text, width=700):
# Split the input text into lines based on newline characters
lines = text.split('\n')
# Wrap each line individually
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
# Join the wrapped lines back together using newline characters
wrapped_text = '\n'.join(wrapped_lines)
return wrapped_text
def process_llm_response(llm_response):
ans = wrap_text_preserve_newlines(llm_response['result'])
sources_used = ' \n'.join(
[
source.metadata['source'].split('/')[-1][:-4]
+ ' - page: '
+ str(source.metadata['page'])
for source in llm_response['source_documents']
]
)
ans = ans + '\n\nSources: \n' + sources_used
return ans
def llm_ans(query):
start = time.time()
llm_response = qa_chain.invoke(query)
ans = process_llm_response(llm_response)
end = time.time()
time_elapsed = int(round(end - start, 0))
time_elapsed_str = f'\n\nTime elapsed: {time_elapsed} s'
return ans + time_elapsed_str
query =question = "what are the structural organization of a human body"
print(llm_ans(query))
"""Gradio Chat UI (Inspired from HinePo)"""
import locale
locale.getpreferredencoding = lambda: "UTF-8"
! pip install --upgrade gradio -qq
clear_output()
def predict(message, history):
# output = message # debug mode
output = str(llm_ans(message)).replace("\n", "<br/>")
return output
demo = gr.ChatInterface(
predict,
title = f' Open-Source LLM ({CFG.model_name}) Question Answering'
)
demo.queue()
demo.launch()
import gradio as gr
print(gr.__version__)