TextTrail / app.py
HemaMeena's picture
Update app.py
e2d159d verified
raw
history blame
6.5 kB
import gradio as gr
import time
import os
import glob
import textwrap
import torch
from transformers import (
AutoTokenizer, AutoModelForCausalLM,
BitsAndBytesConfig,
pipeline
)
from langchain.document_loaders import PyPDFLoader, DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.llms import HuggingFacePipeline
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
# Configuration class
class CFG:
# LLMs
model_name = 'llama2-13b-chat' # wizardlm, llama2-7b-chat, llama2-13b-chat, mistral-7B
temperature = 0
top_p = 0.95
repetition_penalty = 1.15
# splitting
split_chunk_size = 800
split_overlap = 0
# embeddings
embeddings_model_repo = 'sentence-transformers/all-MiniLM-L6-v2'
# similar passages
k = 6
# paths
PDFs_path = './' # Set to your PDF path
Embeddings_path = './faiss-hp-sentence-transformers'
Output_folder = './rag-vectordb'
# Set preferred encoding to UTF-8 (for non-ASCII characters)
import locale
locale.getpreferredencoding = lambda: "UTF-8"
# Function to get model
def get_model(model = CFG.model_name):
print('\nDownloading model: ', model, '\n\n')
if model == 'wizardlm':
model_repo = 'TheBloke/wizardLM-7B-HF'
tokenizer = AutoTokenizer.from_pretrained(model_repo)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
)
model = AutoModelForCausalLM.from_pretrained(
model_repo,
quantization_config=bnb_config,
device_map='auto',
low_cpu_mem_usage=True
)
max_len = 1024
elif model == 'llama2-7b-chat':
model_repo = 'daryl149/llama-2-7b-chat-hf'
tokenizer = AutoTokenizer.from_pretrained(model_repo, use_fast=True)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
)
model = AutoModelForCausalLM.from_pretrained(
model_repo,
quantization_config=bnb_config,
device_map='auto',
low_cpu_mem_usage=True,
trust_remote_code=True
)
max_len = 2048
elif model == 'llama2-13b-chat':
model_repo = 'daryl149/llama-2-13b-chat-hf'
tokenizer = AutoTokenizer.from_pretrained(model_repo, use_fast=True)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
)
model = AutoModelForCausalLM.from_pretrained(
model_repo,
quantization_config=bnb_config,
low_cpu_mem_usage=True,
trust_remote_code=True
)
max_len = 2048
else:
print("Model not implemented!")
return tokenizer, model, max_len
# Get the model
tokenizer, model, max_len = get_model(CFG.model_name)
# Set up Hugging Face pipeline
pipe = pipeline(
task="text-generation",
model=model,
tokenizer=tokenizer,
pad_token_id=tokenizer.eos_token_id,
max_length=max_len,
temperature=CFG.temperature,
top_p=CFG.top_p,
repetition_penalty=CFG.repetition_penalty
)
# Langchain pipeline
llm = HuggingFacePipeline(pipeline=pipe)
# Load the documents
loader = DirectoryLoader(
CFG.PDFs_path,
glob="./*.pdf",
loader_cls=PyPDFLoader,
show_progress=True,
use_multithreading=True
)
documents = loader.load()
# Split the documents
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=CFG.split_chunk_size,
chunk_overlap=CFG.split_overlap
)
texts = text_splitter.split_documents(documents)
# Set up vector store
vectordb = FAISS.from_documents(
texts,
HuggingFaceInstructEmbeddings(model_name=CFG.embeddings_model_repo)
)
# Save the vector store
vectordb.save_local(f"{CFG.Output_folder}/faiss_index_rag")
# Define the prompt template
prompt_template = """
Don't try to make up an answer, if you don't know just say that you don't know.
Answer in the same language the question was asked.
Use only the following pieces of context to answer the question at the end.
{context}
Question: {question}
Answer:"""
PROMPT = PromptTemplate(
template=prompt_template,
input_variables=["context", "question"]
)
# Set up retriever
retriever = vectordb.as_retriever(search_kwargs={"k": CFG.k, "search_type": "similarity"})
# Create the retrieval-based QA chain
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff", # other options: "map_reduce", "map_rerank", "refine"
retriever=retriever,
chain_type_kwargs={"prompt": PROMPT},
return_source_documents=True,
verbose=False
)
# Function to wrap text for proper display
def wrap_text_preserve_newlines(text, width=700):
lines = text.split('\n')
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
wrapped_text = '\n'.join(wrapped_lines)
return wrapped_text
# Function to process model response
def process_llm_response(llm_response):
ans = wrap_text_preserve_newlines(llm_response['result'])
sources_used = ' \n'.join(
[
source.metadata['source'].split('/')[-1][:-4]
+ ' - page: '
+ str(source.metadata['page'])
for source in llm_response['source_documents']
]
)
ans = ans + '\n\nSources: \n' + sources_used
return ans
# Function to get the answer from the model
def llm_ans(query):
start = time.time()
llm_response = qa_chain.invoke(query)
ans = process_llm_response(llm_response)
end = time.time()
time_elapsed = int(round(end - start, 0))
time_elapsed_str = f'\n\nTime elapsed: {time_elapsed} s'
return ans + time_elapsed_str
# Function for Gradio chat interface
def predict(message, history):
output = str(llm_ans(message)).replace("\n", "<br/>")
return output
# Set up Gradio interface
demo = gr.ChatInterface(
fn=predict,
title=f'Open-Source LLM ({CFG.model_name}) Question Answering'
)
# Start the Gradio interface
demo.queue()
demo.launch()