Update app.py
Browse files
app.py
CHANGED
@@ -60,7 +60,7 @@ class CFG:
|
|
60 |
PDFs_path = './'
|
61 |
Embeddings_path = './faiss-hp-sentence-transformers'
|
62 |
Output_folder = './rag-vectordb'
|
63 |
-
|
64 |
def get_model(model=CFG.model_name):
|
65 |
print('\nDownloading model: ', model, '\n\n')
|
66 |
model_repo = None
|
@@ -73,6 +73,7 @@ def get_model(model=CFG.model_name):
|
|
73 |
model = AutoModelForCausalLM.from_pretrained(
|
74 |
model_repo,
|
75 |
device_map="auto",
|
|
|
76 |
trust_remote_code=True
|
77 |
)
|
78 |
max_len = 2048
|
@@ -81,6 +82,7 @@ def get_model(model=CFG.model_name):
|
|
81 |
|
82 |
return tokenizer, model, max_len
|
83 |
|
|
|
84 |
def wrap_text_preserve_newlines(text, width=700):
|
85 |
# Split the input text into lines based on newline characters
|
86 |
lines = text.split('\n')
|
|
|
60 |
PDFs_path = './'
|
61 |
Embeddings_path = './faiss-hp-sentence-transformers'
|
62 |
Output_folder = './rag-vectordb'
|
63 |
+
|
64 |
def get_model(model=CFG.model_name):
|
65 |
print('\nDownloading model: ', model, '\n\n')
|
66 |
model_repo = None
|
|
|
73 |
model = AutoModelForCausalLM.from_pretrained(
|
74 |
model_repo,
|
75 |
device_map="auto",
|
76 |
+
offload_folder="./offload", # Specify offload folder
|
77 |
trust_remote_code=True
|
78 |
)
|
79 |
max_len = 2048
|
|
|
82 |
|
83 |
return tokenizer, model, max_len
|
84 |
|
85 |
+
|
86 |
def wrap_text_preserve_newlines(text, width=700):
|
87 |
# Split the input text into lines based on newline characters
|
88 |
lines = text.split('\n')
|