Update app.py
Browse files
app.py
CHANGED
@@ -36,7 +36,7 @@ sorted(glob.glob('/content/anatomy_vol_*'))
|
|
36 |
|
37 |
class CFG:
|
38 |
# LLMs
|
39 |
-
model_name = 'llama2-13b-chat'
|
40 |
temperature = 0
|
41 |
top_p = 0.95
|
42 |
repetition_penalty = 1.15
|
@@ -53,12 +53,11 @@ class CFG:
|
|
53 |
|
54 |
# paths
|
55 |
PDFs_path = '/content/'
|
56 |
-
Embeddings_path =
|
57 |
Output_folder = './rag-vectordb'
|
58 |
|
|
|
59 |
|
60 |
-
# Define model loading function
|
61 |
-
def get_model(model=CFG.model_name):
|
62 |
print('\nDownloading model: ', model, '\n\n')
|
63 |
|
64 |
if model == 'wizardlm':
|
@@ -67,17 +66,17 @@ def get_model(model=CFG.model_name):
|
|
67 |
tokenizer = AutoTokenizer.from_pretrained(model_repo)
|
68 |
|
69 |
bnb_config = BitsAndBytesConfig(
|
70 |
-
load_in_4bit=True,
|
71 |
-
bnb_4bit_quant_type="nf4",
|
72 |
-
bnb_4bit_compute_dtype=torch.float16,
|
73 |
-
bnb_4bit_use_double_quant=True,
|
74 |
)
|
75 |
|
76 |
model = AutoModelForCausalLM.from_pretrained(
|
77 |
model_repo,
|
78 |
-
quantization_config=bnb_config,
|
79 |
-
device_map='auto',
|
80 |
-
low_cpu_mem_usage=True
|
81 |
)
|
82 |
|
83 |
max_len = 1024
|
@@ -88,18 +87,18 @@ def get_model(model=CFG.model_name):
|
|
88 |
tokenizer = AutoTokenizer.from_pretrained(model_repo, use_fast=True)
|
89 |
|
90 |
bnb_config = BitsAndBytesConfig(
|
91 |
-
load_in_4bit=True,
|
92 |
-
bnb_4bit_quant_type="nf4",
|
93 |
-
bnb_4bit_compute_dtype=torch.float16,
|
94 |
-
bnb_4bit_use_double_quant=True,
|
95 |
)
|
96 |
|
97 |
model = AutoModelForCausalLM.from_pretrained(
|
98 |
model_repo,
|
99 |
-
quantization_config=bnb_config,
|
100 |
-
device_map='auto',
|
101 |
-
low_cpu_mem_usage=True,
|
102 |
-
trust_remote_code=True
|
103 |
)
|
104 |
|
105 |
max_len = 2048
|
@@ -110,20 +109,23 @@ def get_model(model=CFG.model_name):
|
|
110 |
tokenizer = AutoTokenizer.from_pretrained(model_repo, use_fast=True)
|
111 |
|
112 |
bnb_config = BitsAndBytesConfig(
|
113 |
-
load_in_4bit=True,
|
114 |
-
bnb_4bit_quant_type="nf4",
|
115 |
-
bnb_4bit_compute_dtype=torch.float16,
|
116 |
-
bnb_4bit_use_double_quant=True,
|
117 |
)
|
118 |
|
119 |
model = AutoModelForCausalLM.from_pretrained(
|
120 |
model_repo,
|
121 |
-
quantization_config=bnb_config,
|
122 |
-
|
123 |
-
|
|
|
124 |
)
|
125 |
|
126 |
-
max_len = 2048 #
|
|
|
|
|
127 |
|
128 |
elif model == 'mistral-7B':
|
129 |
model_repo = 'mistralai/Mistral-7B-v0.1'
|
@@ -131,17 +133,17 @@ def get_model(model=CFG.model_name):
|
|
131 |
tokenizer = AutoTokenizer.from_pretrained(model_repo)
|
132 |
|
133 |
bnb_config = BitsAndBytesConfig(
|
134 |
-
load_in_4bit=True,
|
135 |
-
bnb_4bit_quant_type="nf4",
|
136 |
-
bnb_4bit_compute_dtype=torch.float16,
|
137 |
-
bnb_4bit_use_double_quant=True,
|
138 |
)
|
139 |
|
140 |
model = AutoModelForCausalLM.from_pretrained(
|
141 |
model_repo,
|
142 |
-
quantization_config=bnb_config,
|
143 |
-
device_map='auto',
|
144 |
-
low_cpu_mem_usage=True,
|
145 |
)
|
146 |
|
147 |
max_len = 1024
|
@@ -151,26 +153,120 @@ def get_model(model=CFG.model_name):
|
|
151 |
|
152 |
return tokenizer, model, max_len
|
153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
-
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
-
# Set up pipeline for LLM
|
159 |
pipe = pipeline(
|
160 |
-
task="text-generation",
|
161 |
-
model=model,
|
162 |
-
tokenizer=tokenizer,
|
163 |
-
pad_token_id=tokenizer.eos_token_id,
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
168 |
)
|
169 |
|
170 |
-
|
171 |
-
llm = HuggingFacePipeline(pipeline=pipe)
|
172 |
|
173 |
-
# Load PDFs from content
|
174 |
loader = DirectoryLoader(
|
175 |
CFG.PDFs_path,
|
176 |
glob="./*.pdf",
|
@@ -181,15 +277,13 @@ loader = DirectoryLoader(
|
|
181 |
|
182 |
documents = loader.load()
|
183 |
|
184 |
-
# Split documents into chunks
|
185 |
text_splitter = RecursiveCharacterTextSplitter(
|
186 |
-
chunk_size=CFG.split_chunk_size,
|
187 |
-
chunk_overlap=CFG.split_overlap
|
188 |
)
|
189 |
|
190 |
texts = text_splitter.split_documents(documents)
|
191 |
|
192 |
-
# Set up vector store with embeddings
|
193 |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
194 |
|
195 |
vectordb = FAISS.from_documents(
|
@@ -197,10 +291,10 @@ vectordb = FAISS.from_documents(
|
|
197 |
HuggingFaceEmbeddings(model_name='sentence-transformers/all-mpnet-base-v2')
|
198 |
)
|
199 |
|
200 |
-
|
201 |
-
vectordb.save_local(f"{CFG.Output_folder}/faiss_index_rag")
|
|
|
202 |
|
203 |
-
# Define prompt template for question answering
|
204 |
prompt_template = """
|
205 |
Don't try to make up an answer, if you don't know just say that you don't know.
|
206 |
Answer in the same language the question was asked.
|
@@ -211,35 +305,39 @@ Use only the following pieces of context to answer the question at the end.
|
|
211 |
Question: {question}
|
212 |
Answer:"""
|
213 |
|
|
|
214 |
PROMPT = PromptTemplate(
|
215 |
-
template=prompt_template,
|
216 |
-
input_variables=["context", "question"]
|
217 |
)
|
218 |
|
219 |
-
|
220 |
-
retriever = vectordb.as_retriever(search_kwargs={"k": CFG.k, "search_type": "similarity"})
|
221 |
|
222 |
-
# Create the QA chain
|
223 |
qa_chain = RetrievalQA.from_chain_type(
|
224 |
-
llm=llm,
|
225 |
-
chain_type="stuff",
|
226 |
-
retriever=retriever,
|
227 |
-
chain_type_kwargs={"prompt": PROMPT},
|
228 |
-
return_source_documents=True,
|
229 |
-
verbose=False
|
230 |
)
|
231 |
|
232 |
-
# Function to wrap text to preserve newlines
|
233 |
def wrap_text_preserve_newlines(text, width=700):
|
|
|
234 |
lines = text.split('\n')
|
|
|
|
|
235 |
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
|
|
|
|
|
236 |
wrapped_text = '\n'.join(wrapped_lines)
|
|
|
237 |
return wrapped_text
|
238 |
|
239 |
|
240 |
-
# Function to process the LLM response
|
241 |
def process_llm_response(llm_response):
|
242 |
ans = wrap_text_preserve_newlines(llm_response['result'])
|
|
|
243 |
sources_used = ' \n'.join(
|
244 |
[
|
245 |
source.metadata['source'].split('/')[-1][:-4]
|
@@ -248,11 +346,10 @@ def process_llm_response(llm_response):
|
|
248 |
for source in llm_response['source_documents']
|
249 |
]
|
250 |
)
|
|
|
251 |
ans = ans + '\n\nSources: \n' + sources_used
|
252 |
return ans
|
253 |
|
254 |
-
|
255 |
-
# Function to get LLM response
|
256 |
def llm_ans(query):
|
257 |
start = time.time()
|
258 |
|
@@ -260,28 +357,26 @@ def llm_ans(query):
|
|
260 |
ans = process_llm_response(llm_response)
|
261 |
|
262 |
end = time.time()
|
|
|
263 |
time_elapsed = int(round(end - start, 0))
|
264 |
time_elapsed_str = f'\n\nTime elapsed: {time_elapsed} s'
|
265 |
return ans + time_elapsed_str
|
266 |
|
267 |
-
|
268 |
-
# Correct locale issue
|
269 |
import locale
|
270 |
locale.getpreferredencoding = lambda: "UTF-8"
|
271 |
|
272 |
-
# Gradio interface
|
273 |
import gradio as gr
|
274 |
|
275 |
-
def predict(message, history):
|
276 |
-
|
277 |
-
return output
|
278 |
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
)
|
|
|
285 |
|
286 |
-
demo.queue()
|
287 |
-
demo.launch()
|
|
|
36 |
|
37 |
class CFG:
|
38 |
# LLMs
|
39 |
+
model_name = 'llama2-13b-chat' # wizardlm, llama2-7b-chat, llama2-13b-chat, mistral-7B
|
40 |
temperature = 0
|
41 |
top_p = 0.95
|
42 |
repetition_penalty = 1.15
|
|
|
53 |
|
54 |
# paths
|
55 |
PDFs_path = '/content/'
|
56 |
+
Embeddings_path = '/content/faiss-hp-sentence-transformers'
|
57 |
Output_folder = './rag-vectordb'
|
58 |
|
59 |
+
def get_model(model = CFG.model_name):
|
60 |
|
|
|
|
|
61 |
print('\nDownloading model: ', model, '\n\n')
|
62 |
|
63 |
if model == 'wizardlm':
|
|
|
66 |
tokenizer = AutoTokenizer.from_pretrained(model_repo)
|
67 |
|
68 |
bnb_config = BitsAndBytesConfig(
|
69 |
+
load_in_4bit = True,
|
70 |
+
bnb_4bit_quant_type = "nf4",
|
71 |
+
bnb_4bit_compute_dtype = torch.float16,
|
72 |
+
bnb_4bit_use_double_quant = True,
|
73 |
)
|
74 |
|
75 |
model = AutoModelForCausalLM.from_pretrained(
|
76 |
model_repo,
|
77 |
+
quantization_config = bnb_config,
|
78 |
+
device_map = 'auto',
|
79 |
+
low_cpu_mem_usage = True
|
80 |
)
|
81 |
|
82 |
max_len = 1024
|
|
|
87 |
tokenizer = AutoTokenizer.from_pretrained(model_repo, use_fast=True)
|
88 |
|
89 |
bnb_config = BitsAndBytesConfig(
|
90 |
+
load_in_4bit = True,
|
91 |
+
bnb_4bit_quant_type = "nf4",
|
92 |
+
bnb_4bit_compute_dtype = torch.float16,
|
93 |
+
bnb_4bit_use_double_quant = True,
|
94 |
)
|
95 |
|
96 |
model = AutoModelForCausalLM.from_pretrained(
|
97 |
model_repo,
|
98 |
+
quantization_config = bnb_config,
|
99 |
+
device_map = 'auto',
|
100 |
+
low_cpu_mem_usage = True,
|
101 |
+
trust_remote_code = True
|
102 |
)
|
103 |
|
104 |
max_len = 2048
|
|
|
109 |
tokenizer = AutoTokenizer.from_pretrained(model_repo, use_fast=True)
|
110 |
|
111 |
bnb_config = BitsAndBytesConfig(
|
112 |
+
load_in_4bit = True,
|
113 |
+
bnb_4bit_quant_type = "nf4",
|
114 |
+
bnb_4bit_compute_dtype = torch.float16,
|
115 |
+
bnb_4bit_use_double_quant = True,
|
116 |
)
|
117 |
|
118 |
model = AutoModelForCausalLM.from_pretrained(
|
119 |
model_repo,
|
120 |
+
quantization_config = bnb_config,
|
121 |
+
|
122 |
+
low_cpu_mem_usage = True,
|
123 |
+
trust_remote_code = True
|
124 |
)
|
125 |
|
126 |
+
max_len = 2048 #8192
|
127 |
+
truncation=True, # Explicitly enable truncation
|
128 |
+
padding="max_len" # Optional: pad to max_length
|
129 |
|
130 |
elif model == 'mistral-7B':
|
131 |
model_repo = 'mistralai/Mistral-7B-v0.1'
|
|
|
133 |
tokenizer = AutoTokenizer.from_pretrained(model_repo)
|
134 |
|
135 |
bnb_config = BitsAndBytesConfig(
|
136 |
+
load_in_4bit = True,
|
137 |
+
bnb_4bit_quant_type = "nf4",
|
138 |
+
bnb_4bit_compute_dtype = torch.float16,
|
139 |
+
bnb_4bit_use_double_quant = True,
|
140 |
)
|
141 |
|
142 |
model = AutoModelForCausalLM.from_pretrained(
|
143 |
model_repo,
|
144 |
+
quantization_config = bnb_config,
|
145 |
+
device_map = 'auto',
|
146 |
+
low_cpu_mem_usage = True,
|
147 |
)
|
148 |
|
149 |
max_len = 1024
|
|
|
153 |
|
154 |
return tokenizer, model, max_len
|
155 |
|
156 |
+
def get_model(model = CFG.model_name):
|
157 |
+
|
158 |
+
print('\nDownloading model: ', model, '\n\n')
|
159 |
+
|
160 |
+
if model == 'wizardlm':
|
161 |
+
model_repo = 'TheBloke/wizardLM-7B-HF'
|
162 |
+
|
163 |
+
tokenizer = AutoTokenizer.from_pretrained(model_repo)
|
164 |
+
|
165 |
+
bnb_config = BitsAndBytesConfig(
|
166 |
+
load_in_4bit = True,
|
167 |
+
bnb_4bit_quant_type = "nf4",
|
168 |
+
bnb_4bit_compute_dtype = torch.float16,
|
169 |
+
bnb_4bit_use_double_quant = True,
|
170 |
+
)
|
171 |
+
|
172 |
+
model = AutoModelForCausalLM.from_pretrained(
|
173 |
+
model_repo,
|
174 |
+
quantization_config = bnb_config,
|
175 |
+
device_map = 'auto',
|
176 |
+
low_cpu_mem_usage = True
|
177 |
+
)
|
178 |
+
|
179 |
+
max_len = 1024
|
180 |
+
|
181 |
+
elif model == 'llama2-7b-chat':
|
182 |
+
model_repo = 'daryl149/llama-2-7b-chat-hf'
|
183 |
+
|
184 |
+
tokenizer = AutoTokenizer.from_pretrained(model_repo, use_fast=True)
|
185 |
+
|
186 |
+
bnb_config = BitsAndBytesConfig(
|
187 |
+
load_in_4bit = True,
|
188 |
+
bnb_4bit_quant_type = "nf4",
|
189 |
+
bnb_4bit_compute_dtype = torch.float16,
|
190 |
+
bnb_4bit_use_double_quant = True,
|
191 |
+
)
|
192 |
+
|
193 |
+
model = AutoModelForCausalLM.from_pretrained(
|
194 |
+
model_repo,
|
195 |
+
quantization_config = bnb_config,
|
196 |
+
device_map = 'auto',
|
197 |
+
low_cpu_mem_usage = True,
|
198 |
+
trust_remote_code = True
|
199 |
+
)
|
200 |
|
201 |
+
max_len = 2048
|
202 |
+
|
203 |
+
elif model == 'llama2-13b-chat':
|
204 |
+
model_repo = 'daryl149/llama-2-13b-chat-hf'
|
205 |
+
|
206 |
+
tokenizer = AutoTokenizer.from_pretrained(model_repo, use_fast=True)
|
207 |
+
|
208 |
+
bnb_config = BitsAndBytesConfig(
|
209 |
+
load_in_4bit = True,
|
210 |
+
bnb_4bit_quant_type = "nf4",
|
211 |
+
bnb_4bit_compute_dtype = torch.float16,
|
212 |
+
bnb_4bit_use_double_quant = True,
|
213 |
+
)
|
214 |
+
|
215 |
+
model = AutoModelForCausalLM.from_pretrained(
|
216 |
+
model_repo,
|
217 |
+
quantization_config = bnb_config,
|
218 |
+
|
219 |
+
low_cpu_mem_usage = True,
|
220 |
+
trust_remote_code = True
|
221 |
+
)
|
222 |
+
|
223 |
+
max_len = 2048 #8192
|
224 |
+
truncation=True, # Explicitly enable truncation
|
225 |
+
padding="max_len" # Optional: pad to max_length
|
226 |
+
|
227 |
+
elif model == 'mistral-7B':
|
228 |
+
model_repo = 'mistralai/Mistral-7B-v0.1'
|
229 |
+
|
230 |
+
tokenizer = AutoTokenizer.from_pretrained(model_repo)
|
231 |
+
|
232 |
+
bnb_config = BitsAndBytesConfig(
|
233 |
+
load_in_4bit = True,
|
234 |
+
bnb_4bit_quant_type = "nf4",
|
235 |
+
bnb_4bit_compute_dtype = torch.float16,
|
236 |
+
bnb_4bit_use_double_quant = True,
|
237 |
+
)
|
238 |
+
|
239 |
+
model = AutoModelForCausalLM.from_pretrained(
|
240 |
+
model_repo,
|
241 |
+
quantization_config = bnb_config,
|
242 |
+
device_map = 'auto',
|
243 |
+
low_cpu_mem_usage = True,
|
244 |
+
)
|
245 |
+
|
246 |
+
max_len = 1024
|
247 |
+
|
248 |
+
else:
|
249 |
+
print("Not implemented model (tokenizer and backbone)")
|
250 |
+
|
251 |
+
return tokenizer, model, max_len
|
252 |
+
|
253 |
+
tokenizer, model, max_len = get_model(model = CFG.model_name)
|
254 |
|
|
|
255 |
pipe = pipeline(
|
256 |
+
task = "text-generation",
|
257 |
+
model = model,
|
258 |
+
tokenizer = tokenizer,
|
259 |
+
pad_token_id = tokenizer.eos_token_id,
|
260 |
+
# do_sample = True,
|
261 |
+
max_length = max_len,
|
262 |
+
temperature = CFG.temperature,
|
263 |
+
top_p = CFG.top_p,
|
264 |
+
repetition_penalty = CFG.repetition_penalty
|
265 |
)
|
266 |
|
267 |
+
### langchain pipeline
|
268 |
+
llm = HuggingFacePipeline(pipeline = pipe)
|
269 |
|
|
|
270 |
loader = DirectoryLoader(
|
271 |
CFG.PDFs_path,
|
272 |
glob="./*.pdf",
|
|
|
277 |
|
278 |
documents = loader.load()
|
279 |
|
|
|
280 |
text_splitter = RecursiveCharacterTextSplitter(
|
281 |
+
chunk_size = CFG.split_chunk_size,
|
282 |
+
chunk_overlap = CFG.split_overlap
|
283 |
)
|
284 |
|
285 |
texts = text_splitter.split_documents(documents)
|
286 |
|
|
|
287 |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
288 |
|
289 |
vectordb = FAISS.from_documents(
|
|
|
291 |
HuggingFaceEmbeddings(model_name='sentence-transformers/all-mpnet-base-v2')
|
292 |
)
|
293 |
|
294 |
+
### persist vector database
|
295 |
+
vectordb.save_local(f"{CFG.Output_folder}/faiss_index_rag") # save in output folder
|
296 |
+
# vectordb.save_local(f"{CFG.Embeddings_path}/faiss_index_hp") # save in input folder
|
297 |
|
|
|
298 |
prompt_template = """
|
299 |
Don't try to make up an answer, if you don't know just say that you don't know.
|
300 |
Answer in the same language the question was asked.
|
|
|
305 |
Question: {question}
|
306 |
Answer:"""
|
307 |
|
308 |
+
|
309 |
PROMPT = PromptTemplate(
|
310 |
+
template = prompt_template,
|
311 |
+
input_variables = ["context", "question"]
|
312 |
)
|
313 |
|
314 |
+
retriever = vectordb.as_retriever(search_kwargs = {"k": CFG.k, "search_type" : "similarity"})
|
|
|
315 |
|
|
|
316 |
qa_chain = RetrievalQA.from_chain_type(
|
317 |
+
llm = llm,
|
318 |
+
chain_type = "stuff", # map_reduce, map_rerank, stuff, refine
|
319 |
+
retriever = retriever,
|
320 |
+
chain_type_kwargs = {"prompt": PROMPT},
|
321 |
+
return_source_documents = True,
|
322 |
+
verbose = False
|
323 |
)
|
324 |
|
|
|
325 |
def wrap_text_preserve_newlines(text, width=700):
|
326 |
+
# Split the input text into lines based on newline characters
|
327 |
lines = text.split('\n')
|
328 |
+
|
329 |
+
# Wrap each line individually
|
330 |
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
|
331 |
+
|
332 |
+
# Join the wrapped lines back together using newline characters
|
333 |
wrapped_text = '\n'.join(wrapped_lines)
|
334 |
+
|
335 |
return wrapped_text
|
336 |
|
337 |
|
|
|
338 |
def process_llm_response(llm_response):
|
339 |
ans = wrap_text_preserve_newlines(llm_response['result'])
|
340 |
+
|
341 |
sources_used = ' \n'.join(
|
342 |
[
|
343 |
source.metadata['source'].split('/')[-1][:-4]
|
|
|
346 |
for source in llm_response['source_documents']
|
347 |
]
|
348 |
)
|
349 |
+
|
350 |
ans = ans + '\n\nSources: \n' + sources_used
|
351 |
return ans
|
352 |
|
|
|
|
|
353 |
def llm_ans(query):
|
354 |
start = time.time()
|
355 |
|
|
|
357 |
ans = process_llm_response(llm_response)
|
358 |
|
359 |
end = time.time()
|
360 |
+
|
361 |
time_elapsed = int(round(end - start, 0))
|
362 |
time_elapsed_str = f'\n\nTime elapsed: {time_elapsed} s'
|
363 |
return ans + time_elapsed_str
|
364 |
|
|
|
|
|
365 |
import locale
|
366 |
locale.getpreferredencoding = lambda: "UTF-8"
|
367 |
|
|
|
368 |
import gradio as gr
|
369 |
|
370 |
+
def predict(message, history):
|
371 |
+
# output = message # debug mode
|
|
|
372 |
|
373 |
+
output = str(llm_ans(message)).replace("\n", "<br/>")
|
374 |
+
return output
|
375 |
+
|
376 |
+
demo = gr.ChatInterface(
|
377 |
+
predict,
|
378 |
+
title = f' Open-Source LLM ({CFG.model_name}) Question Answering'
|
379 |
+
)
|
380 |
|
381 |
+
demo.queue()
|
382 |
+
demo.launch() correct the code
|