import warnings warnings.filterwarnings("ignore") import os import glob import textwrap import time import langchain # Loaders from langchain.document_loaders import PyPDFLoader, DirectoryLoader # Splits from langchain.text_splitter import RecursiveCharacterTextSplitter # Prompts from langchain import PromptTemplate, LLMChain # Vector stores from langchain.vectorstores import FAISS # Models from langchain.llms import HuggingFacePipeline from langchain.embeddings import HuggingFaceInstructEmbeddings # Retrievers from langchain.chains import RetrievalQA import torch import transformers from transformers import ( AutoTokenizer, AutoModelForCausalLM, pipeline ) import gradio as gr import locale import shutil # Clear transformers cache transformers.logging.set_verbosity_error() shutil.rmtree('./.cache', ignore_errors=True) class CFG: # LLMs configuration model_name = 'llama2-13b-chat' # Options: wizardlm, llama2-7b-chat, llama2-13b-chat, mistral-7B temperature = 0 top_p = 0.95 repetition_penalty = 1.15 # Text splitting configuration split_chunk_size = 800 split_overlap = 0 # Embeddings configuration embeddings_model_repo = 'sentence-transformers/all-MiniLM-L6-v2' # Similar passages configuration k = 6 # File paths configuration PDFs_path = './' Embeddings_path = './faiss-hp-sentence-transformers' Output_folder = './rag-vectordb' def get_model(model=CFG.model_name): print('\nDownloading model: ', model, '\n\n') model_repo = 'daryl149/llama-2-13b-chat-hf' if model == 'llama2-13b-chat' else None if not model_repo: raise ValueError("Model not implemented: " + model) tokenizer = AutoTokenizer.from_pretrained(model_repo, use_fast=True) model = AutoModelForCausalLM.from_pretrained( model_repo, device_map="auto", offload_folder="./offload", trust_remote_code=True ) max_len = 2048 return tokenizer, model, max_len def wrap_text_preserve_newlines(text, width=700): lines = text.split('\n') wrapped_lines = [textwrap.fill(line, width=width) for line in lines] return '\n'.join(wrapped_lines) def process_llm_response(llm_response): ans = wrap_text_preserve_newlines(llm_response['result']) sources_used = ' \n'.join( [ f"{source.metadata['source'].split('/')[-1][:-4]} - page: {source.metadata['page']}" for source in llm_response['source_documents'] ] ) return ans + '\n\nSources: \n' + sources_used def llm_ans(query): start = time.time() llm_response = qa_chain.invoke(query) ans = process_llm_response(llm_response) end = time.time() time_elapsed_str = f'\n\nTime elapsed: {int(round(end - start))} s' return ans + time_elapsed_str def predict(message, history): output = str(llm_ans(message)).replace("\n", "
") return output tokenizer, model, max_len = get_model(model=CFG.model_name) pipe = pipeline( task="text-generation", model=model, tokenizer=tokenizer, pad_token_id=tokenizer.eos_token_id, max_length=max_len, temperature=CFG.temperature, top_p=CFG.top_p, repetition_penalty=CFG.repetition_penalty ) # LangChain pipeline setup llm = HuggingFacePipeline(pipeline=pipe) loader = DirectoryLoader( CFG.PDFs_path, glob="./*.pdf", loader_cls=PyPDFLoader, show_progress=True, ) documents = loader.load() text_splitter = RecursiveCharacterTextSplitter( chunk_size=CFG.split_chunk_size, chunk_overlap=CFG.split_overlap ) texts = text_splitter.split_documents(documents) vectordb = FAISS.from_documents( texts, HuggingFaceInstructEmbeddings(model_name='sentence-transformers/all-mpnet-base-v2') ) # Persist vector database vectordb.save_local(f"{CFG.Output_folder}/faiss_index_rag") retriever = vectordb.as_retriever(search_kwargs={"k": CFG.k}) qa_chain = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", # Options: map_reduce, map_rerank, stuff, refine retriever=retriever, ) prompt_template = """ Don't try to make up an answer; if you don't know just say that you don't know. Answer in the same language the question was asked. Use only the following pieces of context to answer the question at the end. {context} Question: {question} Answer:""" PROMPT = PromptTemplate( template=prompt_template, input_variables=["context", "question"] ) locale.getpreferredencoding = lambda: "UTF-8" demo = gr.ChatInterface( fn=predict, title=f'Open-Source LLM ({CFG.model_name}) Question Answering' ) demo.queue() demo.launch()