|
|
|
|
|
import os |
|
import numpy as np |
|
import tensorflow as tf |
|
from tensorflow.keras.preprocessing.image import ImageDataGenerator |
|
from PIL import Image |
|
|
|
|
|
IMAGE_SIZE = (224, 224) |
|
BATCH_SIZE = 32 |
|
|
|
|
|
TRAIN_PATH = 'Covid_19 Image Data' |
|
|
|
|
|
datagen = ImageDataGenerator(rescale=1./255, validation_split=0.15) |
|
|
|
train_data = datagen.flow_from_directory( |
|
TRAIN_PATH, |
|
target_size=IMAGE_SIZE, |
|
batch_size=BATCH_SIZE, |
|
class_mode='binary', |
|
subset='training' |
|
) |
|
|
|
val_data = datagen.flow_from_directory( |
|
TRAIN_PATH, |
|
target_size=IMAGE_SIZE, |
|
batch_size=BATCH_SIZE, |
|
class_mode='binary', |
|
subset='validation' |
|
) |
|
|
|
|
|
|
|
import tensorflow as tf |
|
from tensorflow.keras.applications import ResNet50 |
|
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D, Dropout |
|
from tensorflow.keras.models import Model |
|
|
|
|
|
input_shape = (224, 224, 3) |
|
|
|
|
|
base_model = ResNet50(weights='imagenet', include_top=False, input_shape=input_shape) |
|
|
|
|
|
base_model.trainable = False |
|
|
|
|
|
x = base_model.output |
|
x = GlobalAveragePooling2D()(x) |
|
x = Dense(128, activation='relu')(x) |
|
x = Dropout(0.5)(x) |
|
predictions = Dense(1, activation='sigmoid')(x) |
|
|
|
|
|
model = Model(inputs=base_model.input, outputs=predictions) |
|
|
|
|
|
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) |
|
|
|
|
|
model.summary() |
|
|
|
|
|
|
|
|
|
history = model.fit( |
|
train_data, |
|
validation_data=val_data, |
|
epochs=10, |
|
verbose=1 |
|
) |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
|
|
plt.figure(figsize=(12, 6)) |
|
|
|
|
|
plt.subplot(1, 2, 1) |
|
plt.plot(history.history['accuracy'], label='Training Accuracy') |
|
plt.plot(history.history['val_accuracy'], label='Validation Accuracy') |
|
plt.title('Model Accuracy') |
|
plt.xlabel('Epoch') |
|
plt.ylabel('Accuracy') |
|
plt.legend(loc='lower right') |
|
plt.grid(True) |
|
|
|
|
|
plt.subplot(1, 2, 2) |
|
plt.plot(history.history['loss'], label='Training Loss') |
|
plt.plot(history.history['val_loss'], label='Validation Loss') |
|
plt.title('Model Loss') |
|
plt.xlabel('Epoch') |
|
plt.ylabel('Loss') |
|
plt.legend(loc='upper right') |
|
plt.grid(True) |
|
|
|
|
|
plt.tight_layout() |
|
plt.show() |
|
|
|
|
|
|
|
import numpy as np |
|
import tensorflow as tf |
|
import matplotlib.pyplot as plt |
|
from tensorflow.keras.models import Model |
|
from PIL import Image |
|
|
|
def make_gradcam_heatmap(img_array, model, last_conv_layer_name): |
|
grad_model = Model( |
|
inputs=[model.inputs], |
|
outputs=[model.get_layer(last_conv_layer_name).output, model.output] |
|
) |
|
|
|
|
|
with tf.GradientTape() as tape: |
|
conv_outputs, predictions = grad_model(img_array) |
|
loss = predictions[:, 0] |
|
|
|
|
|
grads = tape.gradient(loss, conv_outputs) |
|
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2)) |
|
|
|
conv_outputs = conv_outputs[0] |
|
heatmap = tf.reduce_mean(tf.multiply(pooled_grads, conv_outputs), axis=-1) |
|
heatmap = np.maximum(heatmap, 0) / np.max(heatmap) |
|
return heatmap |
|
|
|
def display_gradcam(img_path, heatmap, alpha=0.4): |
|
img = Image.open(img_path) |
|
img = img.resize((224, 224)) |
|
|
|
heatmap = np.uint8(255 * heatmap) |
|
heatmap = Image.fromarray(heatmap).resize((img.size), Image.LANCZOS) |
|
heatmap = np.array(heatmap) |
|
|
|
|
|
fig, ax = plt.subplots(1, 2, figsize=(10, 5)) |
|
ax[0].imshow(img) |
|
ax[1].imshow(img) |
|
ax[1].imshow(heatmap, cmap='jet', alpha=alpha) |
|
plt.show() |
|
|
|
|
|
def preprocess_image(image_path): |
|
img = Image.open(image_path) |
|
img = img.resize((224, 224)) |
|
img = np.array(img) / 255.0 |
|
img = np.expand_dims(img, axis=0) |
|
return img |
|
|
|
|
|
img_path = 'Covid_19 Image Data/1/COVID-19 (10).jpg' |
|
|
|
|
|
img_array = preprocess_image(img_path) |
|
|
|
|
|
heatmap = make_gradcam_heatmap(img_array, model, 'conv5_block3_out') |
|
|
|
|
|
display_gradcam(img_path, heatmap) |
|
|
|
|
|
|
|
|
|
test_loss, test_acc = model.evaluate(val_data, verbose=2) |
|
print(f'Test Accuracy: {test_acc:.2f}') |
|
|
|
|
|
|
|
import gradio as gr |
|
import numpy as np |
|
from PIL import Image |
|
import tensorflow as tf |
|
from tensorflow.keras.models import Model |
|
import matplotlib.pyplot as plt |
|
import cv2 |
|
|
|
|
|
def make_gradcam_heatmap(img_array, model, last_conv_layer_name): |
|
grad_model = Model([model.inputs], [model.get_layer(last_conv_layer_name).output, model.output]) |
|
with tf.GradientTape() as tape: |
|
conv_outputs, predictions = grad_model(img_array) |
|
loss = predictions[:, 0] |
|
grads = tape.gradient(loss, conv_outputs) |
|
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2)) |
|
conv_outputs = conv_outputs[0] |
|
heatmap = tf.reduce_mean(tf.multiply(pooled_grads, conv_outputs), axis=-1) |
|
heatmap = np.maximum(heatmap, 0) |
|
heatmap = heatmap / np.max(heatmap) |
|
return heatmap |
|
|
|
|
|
def apply_heatmap_to_image(img, heatmap): |
|
|
|
heatmap = cv2.resize(heatmap, (img.size[0], img.size[1])) |
|
|
|
|
|
heatmap_colored = cv2.applyColorMap(np.uint8(255 * heatmap), cv2.COLORMAP_JET) |
|
|
|
|
|
heatmap_colored = cv2.cvtColor(heatmap_colored, cv2.COLOR_BGR2RGB) |
|
|
|
|
|
overlay = np.array(img) * 0.6 + heatmap_colored * 0.4 |
|
overlay = np.clip(overlay, 0, 255).astype('uint8') |
|
return Image.fromarray(overlay) |
|
|
|
|
|
def predict_and_explain(img): |
|
img = Image.fromarray(img).resize((224, 224)) |
|
img_array = np.array(img) / 255.0 |
|
img_array = np.expand_dims(img_array, axis=0) |
|
|
|
|
|
prediction = model.predict(img_array) |
|
confidence = float(prediction[0][0]) |
|
result = "COVID-19 Positive" if confidence > 0.5 else "Healthy" |
|
|
|
|
|
last_conv_layer_name = 'conv5_block3_out' |
|
heatmap = make_gradcam_heatmap(img_array, model, last_conv_layer_name) |
|
|
|
|
|
heatmap_img = apply_heatmap_to_image(img, heatmap) |
|
|
|
|
|
confidence_text = f"Confidence: {confidence:.2f}" |
|
return result, confidence_text, heatmap_img |
|
|
|
|
|
def create_interface(): |
|
gr_interface = gr.Interface( |
|
fn=predict_and_explain, |
|
inputs=gr.Image(type="numpy"), |
|
outputs=[gr.Textbox(label="Prediction"), gr.Textbox(label="Confidence"), gr.Image(label="Heatmap")], |
|
title="COVID-19 X-ray Classification with Explainability", |
|
description="Upload an X-ray image to predict if the patient has COVID-19, see the confidence score, and view the Grad-CAM heatmap." |
|
) |
|
return gr_interface |
|
|
|
|
|
gr_interface = create_interface() |
|
gr_interface.launch() |
|
|
|
|