Hemant0000 commited on
Commit
8f8b9eb
·
verified ·
1 Parent(s): 4c96fe0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -1,4 +1,4 @@
1
- **Data Preprocessing**
2
 
3
  import os
4
  import numpy as np
@@ -32,7 +32,7 @@ val_data = datagen.flow_from_directory(
32
  subset='validation' # Set as validation data
33
  )
34
 
35
- ** CNN Model Setup (Transfer Learning)**
36
 
37
  import tensorflow as tf
38
  from tensorflow.keras.applications import ResNet50
@@ -64,7 +64,7 @@ model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']
64
  # Model summary
65
  model.summary()
66
 
67
- **Training the Model**
68
 
69
  # Train the model
70
  history = model.fit(
@@ -103,7 +103,7 @@ plt.grid(True)
103
  plt.tight_layout()
104
  plt.show()
105
 
106
- **Explainable AI Integration (Grad-CAM)**
107
 
108
  import numpy as np
109
  import tensorflow as tf
@@ -166,13 +166,13 @@ heatmap = make_gradcam_heatmap(img_array, model, 'conv5_block3_out') # Replace
166
  # Display the original image with the Grad-CAM heatmap overlay
167
  display_gradcam(img_path, heatmap)
168
 
169
- **Evaluation**
170
 
171
  # Evaluate model on validation data
172
  test_loss, test_acc = model.evaluate(val_data, verbose=2)
173
  print(f'Test Accuracy: {test_acc:.2f}')
174
 
175
- **Gradio User Interface**
176
 
177
  !pip install gradio
178
 
 
1
+ #Data Preprocessing
2
 
3
  import os
4
  import numpy as np
 
32
  subset='validation' # Set as validation data
33
  )
34
 
35
+ #CNN Model Setup (Transfer Learning)
36
 
37
  import tensorflow as tf
38
  from tensorflow.keras.applications import ResNet50
 
64
  # Model summary
65
  model.summary()
66
 
67
+ #Training the Model
68
 
69
  # Train the model
70
  history = model.fit(
 
103
  plt.tight_layout()
104
  plt.show()
105
 
106
+ #Explainable AI Integration (Grad-CAM)
107
 
108
  import numpy as np
109
  import tensorflow as tf
 
166
  # Display the original image with the Grad-CAM heatmap overlay
167
  display_gradcam(img_path, heatmap)
168
 
169
+ #Evaluation
170
 
171
  # Evaluate model on validation data
172
  test_loss, test_acc = model.evaluate(val_data, verbose=2)
173
  print(f'Test Accuracy: {test_acc:.2f}')
174
 
175
+ #Gradio User Interface
176
 
177
  !pip install gradio
178