Spaces:
Sleeping
Sleeping
import cv2 | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import mediapipe as mp | |
import gradio as gr | |
import mediapipe as mp | |
import tensorflow as tf | |
from tensorflow.keras.applications import MobileNetV2 | |
from tensorflow.keras.preprocessing.image import img_to_array | |
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input | |
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D | |
from tensorflow.keras.models import Model | |
# classification head to MobileNetV2 | |
base_model = MobileNetV2(weights="imagenet", include_top=False, input_shape=(128, 128, 3)) | |
x = base_model.output | |
x = GlobalAveragePooling2D()(x) | |
x = Dense(1, activation='sigmoid')(x) # Sigmoid activation for binary classification (0 or 1) | |
model = Model(inputs=base_model.input, outputs=x) | |
def classify_gender(image): | |
# Resize image to 128x128 for MobileNetV2 | |
img_resized = cv2.resize(image, (128, 128)) | |
img_array = img_to_array(img_resized) | |
img_array = preprocess_input(img_array) | |
img_array = np.expand_dims(img_array, axis=0) | |
# Predict gender (assuming 0: Male, 1: Female) | |
prediction = model.predict(img_array) | |
gender = "Male" if prediction[0][0] < 0.5 else "Female" | |
return gender | |
# Initialize Mediapipe Pose model | |
mp_pose = mp.solutions.pose | |
pose = mp_pose.Pose(static_image_mode=True) | |
# Function to estimate height using dynamic calibration based on shoulder width | |
def estimate_real_world_height_and_area(image): | |
height, width, _ = image.shape | |
results = pose.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) | |
if not results.pose_landmarks: | |
print("No landmarks detected.") | |
return None, None, None # Return None if no landmarks detected | |
landmarks = results.pose_landmarks.landmark | |
# Reference average shoulder width (in cm) | |
AVERAGE_SHOULDER_WIDTH_CM = 45 | |
# Points for height (nose to ankle) and shoulder width | |
nose = landmarks[mp_pose.PoseLandmark.NOSE] | |
left_shoulder = landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER] | |
right_shoulder = landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER] | |
left_ankle = landmarks[mp_pose.PoseLandmark.LEFT_ANKLE] | |
right_ankle = landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE] | |
# Calculate pixel height between nose (head) and ankle | |
head_y = int(nose.y * height) | |
ankle_y = int((left_ankle.y + right_ankle.y) / 2 * height) | |
pixel_height = abs(ankle_y - head_y) | |
# Calculate shoulder width in pixels | |
shoulder_width_pixels = abs(left_shoulder.x - right_shoulder.x) * width | |
# Determine the pixel-to-cm ratio using shoulder width | |
pixel_to_cm_ratio = AVERAGE_SHOULDER_WIDTH_CM / shoulder_width_pixels if shoulder_width_pixels != 0 else 0 | |
# Calculate real-world height using this ratio | |
real_world_height_cm = pixel_height * pixel_to_cm_ratio | |
# Estimate torso area in pixels | |
torso_width = abs(left_shoulder.x - right_shoulder.x) * width | |
torso_height = abs(left_shoulder.y - left_ankle.y) * height | |
torso_area_pixels = torso_width * torso_height | |
real_torso_area = torso_area_pixels * (pixel_to_cm_ratio ** 2) | |
return real_world_height_cm, real_torso_area, landmarks | |
# Main Gradio prediction function with scaling and plotting | |
def predict(image): | |
try: | |
# Classify Gender | |
gender = classify_gender(image) # Assuming this function is defined | |
# Estimate height and area | |
real_height, real_torso_area, landmarks = estimate_real_world_height_and_area(image) | |
if real_height is None or real_torso_area is None: | |
return "No landmarks detected; please use a clearer image.", None, None, None | |
# Plot with scale | |
fig, ax = plt.subplots(figsize=(10, 10)) | |
ax.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) | |
# Plot landmarks if they exist | |
if landmarks: | |
for landmark in landmarks: | |
ax.scatter(landmark.x * image.shape[1], landmark.y * image.shape[0], color="red", s=10) | |
# Add height and area text | |
ax.text(10, 30, f"Predicted Gender: {gender}", color="yellow", fontsize=12, backgroundcolor='black') | |
ax.text(10, 60, f"Estimated Height: {real_height:.2f} cm", color="yellow", fontsize=12, backgroundcolor='black') | |
ax.text(10, 90, f"Estimated Torso Area: {real_torso_area:.2f} cm^2", color="yellow", fontsize=12, backgroundcolor='black') | |
# Add grid scale to background | |
ax.set_xticks(np.arange(0, image.shape[1], 50)) | |
ax.set_yticks(np.arange(0, image.shape[0], 50)) | |
ax.grid(color='white', linestyle='--', linewidth=0.5) | |
# Save annotated plot for output | |
plt.savefig("output_plot.png") | |
plt.close(fig) | |
return gender, real_height, real_torso_area, "output_plot.png" | |
except Exception as e: | |
print(f"Error encountered: {e}") | |
return f"An error occurred: {e}", None, None, None | |
# Define Gradio interface | |
image_input = gr.Image(label="Input Image") | |
text_output = gr.Textbox(label="Predicted Gender") | |
height_output = gr.Textbox(label="Estimated Height (cm)") | |
area_output = gr.Textbox(label="Estimated Torso Area (cm^2)") | |
image_output = gr.Image(label="Annotated Image with Measurements") | |
# Set up Gradio interface | |
gr_interface = gr.Interface( | |
fn=predict, | |
inputs=image_input, | |
outputs=[text_output, height_output, area_output, image_output], | |
title="Gender, Height, and Body Measurement Estimation", | |
description="Upload an image to predict gender, estimate height, and calculate 2D torso area with a scale overlay." | |
) | |
# Launch the Gradio app | |
gr_interface.launch() |