Update app.py
Browse files
app.py
CHANGED
@@ -94,7 +94,7 @@ plt.legend(['Train', 'Validation'], loc='upper left')
|
|
94 |
plt.show()
|
95 |
|
96 |
# Assuming you have a test directory
|
97 |
-
test_dir = '
|
98 |
|
99 |
# Create a test data generator (without augmentation)
|
100 |
test_datagen = ImageDataGenerator(rescale=1./255)
|
@@ -110,7 +110,7 @@ test_generator = test_datagen.flow_from_directory(
|
|
110 |
test_loss, test_acc = model.evaluate(test_generator, steps=test_generator.samples // 32)
|
111 |
print(f"Test Accuracy: {test_acc}")
|
112 |
|
113 |
-
model.save('
|
114 |
|
115 |
from tensorflow.keras.models import load_model
|
116 |
from tensorflow.keras.preprocessing import image
|
@@ -118,7 +118,7 @@ import numpy as np
|
|
118 |
from PIL import Image
|
119 |
|
120 |
# Load the model
|
121 |
-
model = load_model('
|
122 |
|
123 |
def predict_disease(img_path):
|
124 |
# Load and preprocess the image
|
@@ -138,7 +138,7 @@ def predict_disease(img_path):
|
|
138 |
print("The plant is infected.")
|
139 |
|
140 |
# Example usage:
|
141 |
-
img_path = '
|
142 |
predict_disease(img_path)
|
143 |
|
144 |
import gradio as gr
|
@@ -147,7 +147,7 @@ from PIL import Image
|
|
147 |
import numpy as np
|
148 |
|
149 |
# Load the pre-trained model
|
150 |
-
model = load_model('
|
151 |
|
152 |
# Prediction function to be used in Gradio
|
153 |
def predict_disease(img):
|
|
|
94 |
plt.show()
|
95 |
|
96 |
# Assuming you have a test directory
|
97 |
+
test_dir = 'Tomato_Plant_Disease' # Path to your test dataset
|
98 |
|
99 |
# Create a test data generator (without augmentation)
|
100 |
test_datagen = ImageDataGenerator(rescale=1./255)
|
|
|
110 |
test_loss, test_acc = model.evaluate(test_generator, steps=test_generator.samples // 32)
|
111 |
print(f"Test Accuracy: {test_acc}")
|
112 |
|
113 |
+
model.save('tomato_disease_detection_model.h5')
|
114 |
|
115 |
from tensorflow.keras.models import load_model
|
116 |
from tensorflow.keras.preprocessing import image
|
|
|
118 |
from PIL import Image
|
119 |
|
120 |
# Load the model
|
121 |
+
model = load_model('tomato_disease_detection_model.h5')
|
122 |
|
123 |
def predict_disease(img_path):
|
124 |
# Load and preprocess the image
|
|
|
138 |
print("The plant is infected.")
|
139 |
|
140 |
# Example usage:
|
141 |
+
img_path = 'Tomato_Plant_Disease/0/0045ba29-ed1b-43b4-afde-719cc7adefdb___GCREC_Bact.Sp 6254.JPG'
|
142 |
predict_disease(img_path)
|
143 |
|
144 |
import gradio as gr
|
|
|
147 |
import numpy as np
|
148 |
|
149 |
# Load the pre-trained model
|
150 |
+
model = load_model('tomato_disease_detection_model.h5')
|
151 |
|
152 |
# Prediction function to be used in Gradio
|
153 |
def predict_disease(img):
|