Hemant0000 commited on
Commit
64f1736
·
verified ·
1 Parent(s): 8e3c3c1

Create finetune-cli.py

Browse files
Files changed (1) hide show
  1. finetune-cli.py +127 -0
finetune-cli.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ from model import CFM, UNetT, DiT, Trainer
3
+ from model.utils import get_tokenizer
4
+ from model.dataset import load_dataset
5
+ from cached_path import cached_path
6
+ import shutil
7
+ import os
8
+
9
+ # -------------------------- Dataset Settings --------------------------- #
10
+ target_sample_rate = 24000
11
+ n_mel_channels = 100
12
+ hop_length = 256
13
+
14
+
15
+ # -------------------------- Argument Parsing --------------------------- #
16
+ def parse_args():
17
+ parser = argparse.ArgumentParser(description="Train CFM Model")
18
+
19
+ parser.add_argument(
20
+ "--exp_name", type=str, default="F5TTS_Base", choices=["F5TTS_Base", "E2TTS_Base"], help="Experiment name"
21
+ )
22
+ parser.add_argument("--dataset_name", type=str, default="Emilia_ZH_EN", help="Name of the dataset to use")
23
+ parser.add_argument("--learning_rate", type=float, default=1e-4, help="Learning rate for training")
24
+ parser.add_argument("--batch_size_per_gpu", type=int, default=256, help="Batch size per GPU")
25
+ parser.add_argument(
26
+ "--batch_size_type", type=str, default="frame", choices=["frame", "sample"], help="Batch size type"
27
+ )
28
+ parser.add_argument("--max_samples", type=int, default=16, help="Max sequences per batch")
29
+ parser.add_argument("--grad_accumulation_steps", type=int, default=1, help="Gradient accumulation steps")
30
+ parser.add_argument("--max_grad_norm", type=float, default=1.0, help="Max gradient norm for clipping")
31
+ parser.add_argument("--epochs", type=int, default=10, help="Number of training epochs")
32
+ parser.add_argument("--num_warmup_updates", type=int, default=5, help="Warmup steps")
33
+ parser.add_argument("--save_per_updates", type=int, default=10, help="Save checkpoint every X steps")
34
+ parser.add_argument("--last_per_steps", type=int, default=10, help="Save last checkpoint every X steps")
35
+ parser.add_argument("--finetune", type=bool, default=True, help="Use Finetune")
36
+
37
+ parser.add_argument(
38
+ "--tokenizer", type=str, default="pinyin", choices=["pinyin", "char", "custom"], help="Tokenizer type"
39
+ )
40
+ parser.add_argument(
41
+ "--tokenizer_path",
42
+ type=str,
43
+ default=None,
44
+ help="Path to custom tokenizer vocab file (only used if tokenizer = 'custom')",
45
+ )
46
+
47
+ return parser.parse_args()
48
+
49
+
50
+ # -------------------------- Training Settings -------------------------- #
51
+
52
+
53
+ def main():
54
+ args = parse_args()
55
+
56
+ # Model parameters based on experiment name
57
+ if args.exp_name == "F5TTS_Base":
58
+ wandb_resume_id = None
59
+ model_cls = DiT
60
+ model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
61
+ if args.finetune:
62
+ ckpt_path = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.pt"))
63
+ elif args.exp_name == "E2TTS_Base":
64
+ wandb_resume_id = None
65
+ model_cls = UNetT
66
+ model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
67
+ if args.finetune:
68
+ ckpt_path = str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.pt"))
69
+
70
+ if args.finetune:
71
+ path_ckpt = os.path.join("ckpts", args.dataset_name)
72
+ if not os.path.isdir(path_ckpt):
73
+ os.makedirs(path_ckpt, exist_ok=True)
74
+ shutil.copy2(ckpt_path, os.path.join(path_ckpt, os.path.basename(ckpt_path)))
75
+
76
+ checkpoint_path = os.path.join("ckpts", args.dataset_name)
77
+
78
+ # Use the tokenizer and tokenizer_path provided in the command line arguments
79
+ tokenizer = args.tokenizer
80
+ if tokenizer == "custom":
81
+ if not args.tokenizer_path:
82
+ raise ValueError("Custom tokenizer selected, but no tokenizer_path provided.")
83
+ tokenizer_path = args.tokenizer_path
84
+ else:
85
+ tokenizer_path = args.dataset_name
86
+
87
+ vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)
88
+
89
+ mel_spec_kwargs = dict(
90
+ target_sample_rate=target_sample_rate,
91
+ n_mel_channels=n_mel_channels,
92
+ hop_length=hop_length,
93
+ )
94
+
95
+ e2tts = CFM(
96
+ transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
97
+ mel_spec_kwargs=mel_spec_kwargs,
98
+ vocab_char_map=vocab_char_map,
99
+ )
100
+
101
+ trainer = Trainer(
102
+ e2tts,
103
+ args.epochs,
104
+ args.learning_rate,
105
+ num_warmup_updates=args.num_warmup_updates,
106
+ save_per_updates=args.save_per_updates,
107
+ checkpoint_path=checkpoint_path,
108
+ batch_size=args.batch_size_per_gpu,
109
+ batch_size_type=args.batch_size_type,
110
+ max_samples=args.max_samples,
111
+ grad_accumulation_steps=args.grad_accumulation_steps,
112
+ max_grad_norm=args.max_grad_norm,
113
+ wandb_project="CFM-TTS",
114
+ wandb_run_name=args.exp_name,
115
+ wandb_resume_id=wandb_resume_id,
116
+ last_per_steps=args.last_per_steps,
117
+ )
118
+
119
+ train_dataset = load_dataset(args.dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)
120
+ trainer.train(
121
+ train_dataset,
122
+ resumable_with_seed=666, # seed for shuffling dataset
123
+ )
124
+
125
+
126
+ if __name__ == "__main__":
127
+ main()