Spaces:
Running
Running
Create finetune-cli.py
Browse files- finetune-cli.py +127 -0
finetune-cli.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from model import CFM, UNetT, DiT, Trainer
|
3 |
+
from model.utils import get_tokenizer
|
4 |
+
from model.dataset import load_dataset
|
5 |
+
from cached_path import cached_path
|
6 |
+
import shutil
|
7 |
+
import os
|
8 |
+
|
9 |
+
# -------------------------- Dataset Settings --------------------------- #
|
10 |
+
target_sample_rate = 24000
|
11 |
+
n_mel_channels = 100
|
12 |
+
hop_length = 256
|
13 |
+
|
14 |
+
|
15 |
+
# -------------------------- Argument Parsing --------------------------- #
|
16 |
+
def parse_args():
|
17 |
+
parser = argparse.ArgumentParser(description="Train CFM Model")
|
18 |
+
|
19 |
+
parser.add_argument(
|
20 |
+
"--exp_name", type=str, default="F5TTS_Base", choices=["F5TTS_Base", "E2TTS_Base"], help="Experiment name"
|
21 |
+
)
|
22 |
+
parser.add_argument("--dataset_name", type=str, default="Emilia_ZH_EN", help="Name of the dataset to use")
|
23 |
+
parser.add_argument("--learning_rate", type=float, default=1e-4, help="Learning rate for training")
|
24 |
+
parser.add_argument("--batch_size_per_gpu", type=int, default=256, help="Batch size per GPU")
|
25 |
+
parser.add_argument(
|
26 |
+
"--batch_size_type", type=str, default="frame", choices=["frame", "sample"], help="Batch size type"
|
27 |
+
)
|
28 |
+
parser.add_argument("--max_samples", type=int, default=16, help="Max sequences per batch")
|
29 |
+
parser.add_argument("--grad_accumulation_steps", type=int, default=1, help="Gradient accumulation steps")
|
30 |
+
parser.add_argument("--max_grad_norm", type=float, default=1.0, help="Max gradient norm for clipping")
|
31 |
+
parser.add_argument("--epochs", type=int, default=10, help="Number of training epochs")
|
32 |
+
parser.add_argument("--num_warmup_updates", type=int, default=5, help="Warmup steps")
|
33 |
+
parser.add_argument("--save_per_updates", type=int, default=10, help="Save checkpoint every X steps")
|
34 |
+
parser.add_argument("--last_per_steps", type=int, default=10, help="Save last checkpoint every X steps")
|
35 |
+
parser.add_argument("--finetune", type=bool, default=True, help="Use Finetune")
|
36 |
+
|
37 |
+
parser.add_argument(
|
38 |
+
"--tokenizer", type=str, default="pinyin", choices=["pinyin", "char", "custom"], help="Tokenizer type"
|
39 |
+
)
|
40 |
+
parser.add_argument(
|
41 |
+
"--tokenizer_path",
|
42 |
+
type=str,
|
43 |
+
default=None,
|
44 |
+
help="Path to custom tokenizer vocab file (only used if tokenizer = 'custom')",
|
45 |
+
)
|
46 |
+
|
47 |
+
return parser.parse_args()
|
48 |
+
|
49 |
+
|
50 |
+
# -------------------------- Training Settings -------------------------- #
|
51 |
+
|
52 |
+
|
53 |
+
def main():
|
54 |
+
args = parse_args()
|
55 |
+
|
56 |
+
# Model parameters based on experiment name
|
57 |
+
if args.exp_name == "F5TTS_Base":
|
58 |
+
wandb_resume_id = None
|
59 |
+
model_cls = DiT
|
60 |
+
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
61 |
+
if args.finetune:
|
62 |
+
ckpt_path = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.pt"))
|
63 |
+
elif args.exp_name == "E2TTS_Base":
|
64 |
+
wandb_resume_id = None
|
65 |
+
model_cls = UNetT
|
66 |
+
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
67 |
+
if args.finetune:
|
68 |
+
ckpt_path = str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.pt"))
|
69 |
+
|
70 |
+
if args.finetune:
|
71 |
+
path_ckpt = os.path.join("ckpts", args.dataset_name)
|
72 |
+
if not os.path.isdir(path_ckpt):
|
73 |
+
os.makedirs(path_ckpt, exist_ok=True)
|
74 |
+
shutil.copy2(ckpt_path, os.path.join(path_ckpt, os.path.basename(ckpt_path)))
|
75 |
+
|
76 |
+
checkpoint_path = os.path.join("ckpts", args.dataset_name)
|
77 |
+
|
78 |
+
# Use the tokenizer and tokenizer_path provided in the command line arguments
|
79 |
+
tokenizer = args.tokenizer
|
80 |
+
if tokenizer == "custom":
|
81 |
+
if not args.tokenizer_path:
|
82 |
+
raise ValueError("Custom tokenizer selected, but no tokenizer_path provided.")
|
83 |
+
tokenizer_path = args.tokenizer_path
|
84 |
+
else:
|
85 |
+
tokenizer_path = args.dataset_name
|
86 |
+
|
87 |
+
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)
|
88 |
+
|
89 |
+
mel_spec_kwargs = dict(
|
90 |
+
target_sample_rate=target_sample_rate,
|
91 |
+
n_mel_channels=n_mel_channels,
|
92 |
+
hop_length=hop_length,
|
93 |
+
)
|
94 |
+
|
95 |
+
e2tts = CFM(
|
96 |
+
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
|
97 |
+
mel_spec_kwargs=mel_spec_kwargs,
|
98 |
+
vocab_char_map=vocab_char_map,
|
99 |
+
)
|
100 |
+
|
101 |
+
trainer = Trainer(
|
102 |
+
e2tts,
|
103 |
+
args.epochs,
|
104 |
+
args.learning_rate,
|
105 |
+
num_warmup_updates=args.num_warmup_updates,
|
106 |
+
save_per_updates=args.save_per_updates,
|
107 |
+
checkpoint_path=checkpoint_path,
|
108 |
+
batch_size=args.batch_size_per_gpu,
|
109 |
+
batch_size_type=args.batch_size_type,
|
110 |
+
max_samples=args.max_samples,
|
111 |
+
grad_accumulation_steps=args.grad_accumulation_steps,
|
112 |
+
max_grad_norm=args.max_grad_norm,
|
113 |
+
wandb_project="CFM-TTS",
|
114 |
+
wandb_run_name=args.exp_name,
|
115 |
+
wandb_resume_id=wandb_resume_id,
|
116 |
+
last_per_steps=args.last_per_steps,
|
117 |
+
)
|
118 |
+
|
119 |
+
train_dataset = load_dataset(args.dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)
|
120 |
+
trainer.train(
|
121 |
+
train_dataset,
|
122 |
+
resumable_with_seed=666, # seed for shuffling dataset
|
123 |
+
)
|
124 |
+
|
125 |
+
|
126 |
+
if __name__ == "__main__":
|
127 |
+
main()
|