Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +347 -37
src/streamlit_app.py
CHANGED
@@ -1,40 +1,350 @@
|
|
1 |
-
import
|
2 |
import numpy as np
|
|
|
|
|
|
|
3 |
import pandas as pd
|
4 |
-
import streamlit as st
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
""
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
st.
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
from scipy.stats import norm
|
5 |
+
from scipy.optimize import minimize
|
6 |
import pandas as pd
|
|
|
7 |
|
8 |
+
# Set page config
|
9 |
+
st.set_page_config(page_title="Gaussian Distribution & Overfitting Demo", layout="wide")
|
10 |
+
|
11 |
+
st.title("Gaussian Distribution & Overfitting in ML")
|
12 |
+
st.markdown("Interactive demonstration of concepts from PRML Chapter 1")
|
13 |
+
|
14 |
+
# Sidebar for navigation
|
15 |
+
page = st.sidebar.selectbox("Select Demo",
|
16 |
+
["Gaussian Distribution Basics",
|
17 |
+
"Maximum Likelihood Bias",
|
18 |
+
"Polynomial Curve Fitting",
|
19 |
+
"Probabilistic Curve Fitting",
|
20 |
+
"Regularized Curve Fitting"])
|
21 |
+
|
22 |
+
if page == "Gaussian Distribution Basics":
|
23 |
+
st.header("1.2.4 The Gaussian Distribution")
|
24 |
+
|
25 |
+
col1, col2 = st.columns(2)
|
26 |
+
|
27 |
+
with col1:
|
28 |
+
st.subheader("Parameters")
|
29 |
+
mu = st.slider("Mean (渭)", -5.0, 5.0, 0.0, 0.1)
|
30 |
+
sigma = st.slider("Standard Deviation (蟽)", 0.1, 5.0, 1.0, 0.1)
|
31 |
+
|
32 |
+
st.latex(r"N(x|\mu, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}")
|
33 |
+
|
34 |
+
with col2:
|
35 |
+
st.subheader("Gaussian Distribution Plot")
|
36 |
+
x = np.linspace(mu - 4*sigma, mu + 4*sigma, 1000)
|
37 |
+
y = norm.pdf(x, mu, sigma)
|
38 |
+
|
39 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
40 |
+
ax.plot(x, y, 'b-', linewidth=2, label=f'N({mu:.1f}, {sigma:.1f}虏)')
|
41 |
+
ax.fill_between(x, y, alpha=0.3)
|
42 |
+
ax.axvline(mu, color='r', linestyle='--', label=f'Mean = {mu:.1f}')
|
43 |
+
ax.axvline(mu - sigma, color='g', linestyle='--', alpha=0.5)
|
44 |
+
ax.axvline(mu + sigma, color='g', linestyle='--', alpha=0.5, label=f'卤蟽 = 卤{sigma:.1f}')
|
45 |
+
ax.set_xlabel('x')
|
46 |
+
ax.set_ylabel('p(x)')
|
47 |
+
ax.legend()
|
48 |
+
ax.grid(True, alpha=0.3)
|
49 |
+
st.pyplot(fig)
|
50 |
+
|
51 |
+
elif page == "Maximum Likelihood Bias":
|
52 |
+
st.header("Maximum Likelihood Bias in Variance Estimation")
|
53 |
+
st.markdown("This demonstrates how ML systematically underestimates the true variance")
|
54 |
+
|
55 |
+
col1, col2 = st.columns(2)
|
56 |
+
|
57 |
+
with col1:
|
58 |
+
st.subheader("Simulation Parameters")
|
59 |
+
true_mu = st.slider("True Mean", -2.0, 2.0, 0.0, 0.1)
|
60 |
+
true_sigma = st.slider("True Std Dev", 0.5, 3.0, 1.0, 0.1)
|
61 |
+
n_samples = st.slider("Number of Samples (N)", 2, 100, 10, 1)
|
62 |
+
n_experiments = st.slider("Number of Experiments", 100, 1000, 500, 100)
|
63 |
+
|
64 |
+
if st.button("Run Simulation"):
|
65 |
+
# Run multiple experiments
|
66 |
+
ml_means = []
|
67 |
+
ml_vars = []
|
68 |
+
unbiased_vars = []
|
69 |
+
|
70 |
+
for _ in range(n_experiments):
|
71 |
+
# Generate random samples
|
72 |
+
samples = np.random.normal(true_mu, true_sigma, n_samples)
|
73 |
+
|
74 |
+
# ML estimates
|
75 |
+
ml_mean = np.mean(samples)
|
76 |
+
ml_var = np.var(samples, ddof=0) # ML estimate
|
77 |
+
unbiased_var = np.var(samples, ddof=1) # Unbiased estimate
|
78 |
+
|
79 |
+
ml_means.append(ml_mean)
|
80 |
+
ml_vars.append(ml_var)
|
81 |
+
unbiased_vars.append(unbiased_var)
|
82 |
+
|
83 |
+
# Store results in session state
|
84 |
+
st.session_state.ml_means = ml_means
|
85 |
+
st.session_state.ml_vars = ml_vars
|
86 |
+
st.session_state.unbiased_vars = unbiased_vars
|
87 |
+
st.session_state.true_var = true_sigma**2
|
88 |
+
st.session_state.n_samples_used = n_samples
|
89 |
+
|
90 |
+
# Results section below parameters
|
91 |
+
if 'ml_vars' in st.session_state:
|
92 |
+
st.markdown("---") # Separator line
|
93 |
+
st.subheader("Results")
|
94 |
+
|
95 |
+
# Calculate averages
|
96 |
+
avg_ml_var = np.mean(st.session_state.ml_vars)
|
97 |
+
avg_unbiased_var = np.mean(st.session_state.unbiased_vars)
|
98 |
+
true_var = st.session_state.true_var
|
99 |
+
n_samples_used = st.session_state.n_samples_used
|
100 |
+
expected_ml_var = (n_samples_used - 1) / n_samples_used * true_var
|
101 |
+
|
102 |
+
# Display metrics
|
103 |
+
col3, col4, col5, col6 = st.columns(4)
|
104 |
+
with col3:
|
105 |
+
st.metric("Average ML Mean", f"{np.mean(st.session_state.ml_means):.4f}")
|
106 |
+
with col4:
|
107 |
+
st.metric("Average Unbiased Mean", f"{np.mean(st.session_state.unbiased_vars):.4f}")
|
108 |
+
with col5:
|
109 |
+
st.metric("True Mean", f"{true_mu:.4f}")
|
110 |
+
with col6:
|
111 |
+
st.metric("Expected ML Variance", f"{expected_ml_var:.4f}",
|
112 |
+
f"{(expected_ml_var - true_var) / true_var * 100:.1f}%")
|
113 |
+
|
114 |
+
# Bias factor
|
115 |
+
st.info(f"Bias Factor: (N-1)/N = {n_samples_used-1}/{n_samples_used} = {(n_samples_used-1)/n_samples_used:.3f}")
|
116 |
+
|
117 |
+
with col2:
|
118 |
+
if 'ml_vars' in st.session_state:
|
119 |
+
st.subheader("Variance Distribution")
|
120 |
+
|
121 |
+
# Get values for plotting
|
122 |
+
true_var = st.session_state.true_var
|
123 |
+
n_samples_used = st.session_state.n_samples_used
|
124 |
+
expected_ml_var = (n_samples_used - 1) / n_samples_used * true_var
|
125 |
+
|
126 |
+
# Histogram
|
127 |
+
fig, ax = plt.subplots(figsize=(10, 8))
|
128 |
+
ax.hist(st.session_state.ml_vars, bins=30, alpha=0.5, label='ML Variance', density=True)
|
129 |
+
ax.hist(st.session_state.unbiased_vars, bins=30, alpha=0.5, label='Unbiased Variance', density=True)
|
130 |
+
ax.axvline(true_var, color='r', linestyle='--', linewidth=2, label='True Variance')
|
131 |
+
ax.axvline(expected_ml_var, color='g', linestyle='--', linewidth=2, label='Expected ML Variance')
|
132 |
+
ax.set_xlabel('Variance Estimate', fontsize=12)
|
133 |
+
ax.set_ylabel('Density', fontsize=12)
|
134 |
+
ax.legend(fontsize=11)
|
135 |
+
ax.grid(True, alpha=0.3)
|
136 |
+
ax.set_title(f'Distribution of Variance Estimates (N={n_samples_used})', fontsize=14)
|
137 |
+
st.pyplot(fig)
|
138 |
+
|
139 |
+
elif page == "Polynomial Curve Fitting":
|
140 |
+
st.header("Polynomial Curve Fitting and Overfitting")
|
141 |
+
|
142 |
+
# Generate true function
|
143 |
+
def true_function(x):
|
144 |
+
return np.sin(2 * np.pi * x)
|
145 |
+
|
146 |
+
col1, col2 = st.columns([1, 2])
|
147 |
+
|
148 |
+
with col1:
|
149 |
+
st.subheader("Parameters")
|
150 |
+
n_data_points = st.slider("Number of Data Points", 5, 50, 15, 1)
|
151 |
+
noise_level = st.slider("Noise Level", 0.0, 0.5, 0.2, 0.05)
|
152 |
+
polynomial_degree = st.slider("Polynomial Degree (M)", 0, 15, 3, 1)
|
153 |
+
|
154 |
+
if st.button("Generate New Data"):
|
155 |
+
np.random.seed(None) # Random seed
|
156 |
+
x_train = np.random.uniform(0, 1, n_data_points)
|
157 |
+
y_train = true_function(x_train) + np.random.normal(0, noise_level, n_data_points)
|
158 |
+
st.session_state.x_train = x_train
|
159 |
+
st.session_state.y_train = y_train
|
160 |
+
|
161 |
+
# Initialize data if not exists
|
162 |
+
if 'x_train' not in st.session_state:
|
163 |
+
np.random.seed(42)
|
164 |
+
x_train = np.random.uniform(0, 1, n_data_points)
|
165 |
+
y_train = true_function(x_train) + np.random.normal(0, noise_level, n_data_points)
|
166 |
+
st.session_state.x_train = x_train
|
167 |
+
st.session_state.y_train = y_train
|
168 |
+
|
169 |
+
with col2:
|
170 |
+
st.subheader("Polynomial Fit")
|
171 |
+
|
172 |
+
# Fit polynomial
|
173 |
+
X_train = np.vander(st.session_state.x_train, polynomial_degree + 1, increasing=True)
|
174 |
+
w = np.linalg.lstsq(X_train, st.session_state.y_train, rcond=None)[0]
|
175 |
+
|
176 |
+
# Plot
|
177 |
+
x_plot = np.linspace(0, 1, 200)
|
178 |
+
X_plot = np.vander(x_plot, polynomial_degree + 1, increasing=True)
|
179 |
+
y_pred = X_plot @ w
|
180 |
+
y_true = true_function(x_plot)
|
181 |
+
|
182 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
183 |
+
ax.plot(x_plot, y_true, 'g-', linewidth=2, label='True Function')
|
184 |
+
ax.plot(x_plot, y_pred, 'r-', linewidth=2, label=f'Polynomial (M={polynomial_degree})')
|
185 |
+
ax.scatter(st.session_state.x_train, st.session_state.y_train,
|
186 |
+
c='blue', s=50, alpha=0.8, edgecolors='black', label='Training Data')
|
187 |
+
ax.set_xlabel('x')
|
188 |
+
ax.set_ylabel('y')
|
189 |
+
ax.set_ylim(-1.5, 1.5)
|
190 |
+
ax.legend()
|
191 |
+
ax.grid(True, alpha=0.3)
|
192 |
+
ax.set_title(f'Polynomial Degree M = {polynomial_degree}')
|
193 |
+
st.pyplot(fig)
|
194 |
+
|
195 |
+
# Calculate training error
|
196 |
+
y_train_pred = X_train @ w
|
197 |
+
train_rmse = np.sqrt(np.mean((st.session_state.y_train - y_train_pred)**2))
|
198 |
+
st.metric("Training RMSE", f"{train_rmse:.4f}")
|
199 |
+
|
200 |
+
elif page == "Probabilistic Curve Fitting":
|
201 |
+
st.header("Probabilistic View of Curve Fitting")
|
202 |
+
st.latex(r"p(t|x,\mathbf{w},\beta) = N(t|y(x,\mathbf{w}), \beta^{-1})")
|
203 |
+
|
204 |
+
col1, col2 = st.columns([1, 2])
|
205 |
+
|
206 |
+
with col1:
|
207 |
+
st.subheader("Parameters")
|
208 |
+
n_data_points = st.slider("Number of Data Points", 5, 50, 20, 1)
|
209 |
+
true_noise = st.slider("True Noise (蟽)", 0.1, 0.5, 0.2, 0.05)
|
210 |
+
polynomial_degree = st.slider("Polynomial Degree", 0, 9, 3, 1)
|
211 |
+
show_uncertainty = st.checkbox("Show Predictive Distribution", True)
|
212 |
+
|
213 |
+
if st.button("Generate Data"):
|
214 |
+
np.random.seed(None)
|
215 |
+
x_train = np.random.uniform(0, 1, n_data_points)
|
216 |
+
y_train = np.sin(2 * np.pi * x_train) + np.random.normal(0, true_noise, n_data_points)
|
217 |
+
st.session_state.prob_x_train = x_train
|
218 |
+
st.session_state.prob_y_train = y_train
|
219 |
+
|
220 |
+
# Initialize data
|
221 |
+
if 'prob_x_train' not in st.session_state:
|
222 |
+
np.random.seed(42)
|
223 |
+
x_train = np.random.uniform(0, 1, n_data_points)
|
224 |
+
y_train = np.sin(2 * np.pi * x_train) + np.random.normal(0, true_noise, n_data_points)
|
225 |
+
st.session_state.prob_x_train = x_train
|
226 |
+
st.session_state.prob_y_train = y_train
|
227 |
+
|
228 |
+
with col2:
|
229 |
+
st.subheader("Maximum Likelihood Fit")
|
230 |
+
|
231 |
+
# Fit polynomial and estimate noise
|
232 |
+
X_train = np.vander(st.session_state.prob_x_train, polynomial_degree + 1, increasing=True)
|
233 |
+
w_ml = np.linalg.lstsq(X_train, st.session_state.prob_y_train, rcond=None)[0]
|
234 |
+
|
235 |
+
# Estimate noise variance (beta^-1)
|
236 |
+
y_train_pred = X_train @ w_ml
|
237 |
+
residuals = st.session_state.prob_y_train - y_train_pred
|
238 |
+
sigma_ml = np.sqrt(np.mean(residuals**2))
|
239 |
+
beta_ml = 1 / (sigma_ml**2)
|
240 |
+
|
241 |
+
# Plot
|
242 |
+
x_plot = np.linspace(0, 1, 200)
|
243 |
+
X_plot = np.vander(x_plot, polynomial_degree + 1, increasing=True)
|
244 |
+
y_mean = X_plot @ w_ml
|
245 |
+
|
246 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
247 |
+
|
248 |
+
# Plot uncertainty bands if requested
|
249 |
+
if show_uncertainty:
|
250 |
+
y_std = np.sqrt(1 / beta_ml)
|
251 |
+
ax.fill_between(x_plot, y_mean - 2*y_std, y_mean + 2*y_std,
|
252 |
+
alpha=0.3, color='red', label='卤2蟽 predictive')
|
253 |
+
|
254 |
+
ax.plot(x_plot, np.sin(2 * np.pi * x_plot), 'g-', linewidth=2, label='True Function')
|
255 |
+
ax.plot(x_plot, y_mean, 'r-', linewidth=2, label=f'ML Fit (M={polynomial_degree})')
|
256 |
+
ax.scatter(st.session_state.prob_x_train, st.session_state.prob_y_train,
|
257 |
+
c='blue', s=50, alpha=0.8, edgecolors='black', label='Training Data')
|
258 |
+
|
259 |
+
ax.set_xlabel('x')
|
260 |
+
ax.set_ylabel('t')
|
261 |
+
ax.legend()
|
262 |
+
ax.grid(True, alpha=0.3)
|
263 |
+
st.pyplot(fig)
|
264 |
+
|
265 |
+
# Display estimated parameters
|
266 |
+
col3, col4 = st.columns(2)
|
267 |
+
with col3:
|
268 |
+
st.metric("ML Noise Estimate (蟽)", f"{sigma_ml:.3f}")
|
269 |
+
with col4:
|
270 |
+
st.metric("True Noise (蟽)", f"{true_noise:.3f}")
|
271 |
+
|
272 |
+
elif page == "Regularized Curve Fitting":
|
273 |
+
st.header("Regularized Curve Fitting (MAP Estimation)")
|
274 |
+
st.latex(r"E(\mathbf{w}) = \frac{\beta}{2}\sum_{n=1}^{N}\{y(x_n,\mathbf{w})-t_n\}^2 + \frac{\alpha}{2}\mathbf{w}^T\mathbf{w}")
|
275 |
+
|
276 |
+
col1, col2 = st.columns([1, 2])
|
277 |
+
|
278 |
+
with col1:
|
279 |
+
st.subheader("Parameters")
|
280 |
+
n_data_points = st.slider("Data Points", 10, 50, 15, 1)
|
281 |
+
noise_level = st.slider("Noise", 0.1, 0.5, 0.3, 0.05)
|
282 |
+
polynomial_degree = st.slider("Degree (M)", 0, 15, 9, 1)
|
283 |
+
log_lambda = st.slider("log鈧佲個(位)", -8.0, 2.0, -3.0, 0.5)
|
284 |
+
regularization = 10**log_lambda
|
285 |
+
|
286 |
+
if st.button("New Data"):
|
287 |
+
np.random.seed(None)
|
288 |
+
x_train = np.random.uniform(0, 1, n_data_points)
|
289 |
+
y_train = np.sin(2 * np.pi * x_train) + np.random.normal(0, noise_level, n_data_points)
|
290 |
+
st.session_state.reg_x_train = x_train
|
291 |
+
st.session_state.reg_y_train = y_train
|
292 |
+
|
293 |
+
# Initialize
|
294 |
+
if 'reg_x_train' not in st.session_state:
|
295 |
+
np.random.seed(42)
|
296 |
+
x_train = np.random.uniform(0, 1, n_data_points)
|
297 |
+
y_train = np.sin(2 * np.pi * x_train) + np.random.normal(0, noise_level, n_data_points)
|
298 |
+
st.session_state.reg_x_train = x_train
|
299 |
+
st.session_state.reg_y_train = y_train
|
300 |
+
|
301 |
+
with col2:
|
302 |
+
st.subheader("Regularized Fit")
|
303 |
+
|
304 |
+
# Fit with regularization
|
305 |
+
X_train = np.vander(st.session_state.reg_x_train, polynomial_degree + 1, increasing=True)
|
306 |
+
|
307 |
+
# Ridge regression (L2 regularization)
|
308 |
+
XtX = X_train.T @ X_train
|
309 |
+
Xty = X_train.T @ st.session_state.reg_y_train
|
310 |
+
w_reg = np.linalg.solve(XtX + regularization * np.eye(polynomial_degree + 1), Xty)
|
311 |
+
|
312 |
+
# Plot
|
313 |
+
x_plot = np.linspace(0, 1, 200)
|
314 |
+
X_plot = np.vander(x_plot, polynomial_degree + 1, increasing=True)
|
315 |
+
y_pred = X_plot @ w_reg
|
316 |
+
|
317 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
318 |
+
ax.plot(x_plot, np.sin(2 * np.pi * x_plot), 'g-', linewidth=2, label='True Function')
|
319 |
+
ax.plot(x_plot, y_pred, 'r-', linewidth=2, label=f'Regularized (位={regularization:.1e})')
|
320 |
+
ax.scatter(st.session_state.reg_x_train, st.session_state.reg_y_train,
|
321 |
+
c='blue', s=50, alpha=0.8, edgecolors='black', label='Training Data')
|
322 |
+
ax.set_xlabel('x')
|
323 |
+
ax.set_ylabel('t')
|
324 |
+
ax.set_ylim(-1.5, 1.5)
|
325 |
+
ax.legend()
|
326 |
+
ax.grid(True, alpha=0.3)
|
327 |
+
ax.set_title(f'M = {polynomial_degree}, 位 = {regularization:.1e}')
|
328 |
+
st.pyplot(fig)
|
329 |
+
|
330 |
+
# Metrics
|
331 |
+
train_pred = X_train @ w_reg
|
332 |
+
train_rmse = np.sqrt(np.mean((st.session_state.reg_y_train - train_pred)**2))
|
333 |
+
weight_norm = np.linalg.norm(w_reg)
|
334 |
+
|
335 |
+
col3, col4 = st.columns(2)
|
336 |
+
with col3:
|
337 |
+
st.metric("Training RMSE", f"{train_rmse:.4f}")
|
338 |
+
with col4:
|
339 |
+
st.metric("||w||虏", f"{weight_norm:.2f}")
|
340 |
+
|
341 |
+
# Add information footer
|
342 |
+
st.markdown("---")
|
343 |
+
st.markdown("### Key Concepts Demonstrated:")
|
344 |
+
st.markdown("""
|
345 |
+
- **Gaussian Distribution**: Fundamental probability distribution with mean 渭 and variance 蟽虏
|
346 |
+
- **Maximum Likelihood Bias**: ML estimation systematically underestimates variance by factor (N-1)/N
|
347 |
+
- **Overfitting**: High-degree polynomials fit training data perfectly but generalize poorly
|
348 |
+
- **Probabilistic Curve Fitting**: View regression as estimating conditional distribution p(t|x)
|
349 |
+
- **Regularization**: Adding penalty term 伪||w||虏 prevents overfitting (equivalent to MAP with Gaussian prior)
|
350 |
+
""")
|