Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,92 +1,8 @@
|
|
1 |
-
# import torch
|
2 |
-
# from transformers import pipeline
|
3 |
-
# import gradio as gr
|
4 |
-
|
5 |
-
# MODEL_NAME = "Hemg/ASRr"
|
6 |
-
# BATCH_SIZE = 8
|
7 |
-
|
8 |
-
# device = 0 if torch.cuda.is_available() else "cpu"
|
9 |
-
|
10 |
-
# pipe = pipeline(
|
11 |
-
# task="automatic-speech-recognition",
|
12 |
-
# model=MODEL_NAME,
|
13 |
-
# chunk_length_s=30,
|
14 |
-
# device=device,
|
15 |
-
# return_timestamps='word'
|
16 |
-
# )
|
17 |
-
|
18 |
-
|
19 |
-
# # Copied from https://github.com/openai/whisper/blob/c09a7ae299c4c34c5839a76380ae407e7d785914/whisper/utils.py#L50
|
20 |
-
# def format_timestamp(
|
21 |
-
# seconds: float, always_include_hours: bool = False, decimal_marker: str = "."
|
22 |
-
# ):
|
23 |
-
# if seconds is not None:
|
24 |
-
# milliseconds = round(seconds * 1000.0)
|
25 |
-
|
26 |
-
# hours = milliseconds // 3_600_000
|
27 |
-
# milliseconds -= hours * 3_600_000
|
28 |
-
|
29 |
-
# minutes = milliseconds // 60_000
|
30 |
-
# milliseconds -= minutes * 60_000
|
31 |
-
|
32 |
-
# seconds = milliseconds // 1_000
|
33 |
-
# milliseconds -= seconds * 1_000
|
34 |
-
|
35 |
-
# hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
|
36 |
-
# return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
|
37 |
-
# else:
|
38 |
-
# # we have a malformed timestamp so just return it as is
|
39 |
-
# return seconds
|
40 |
-
|
41 |
-
|
42 |
-
# def transcribe(file, return_timestamps):
|
43 |
-
# outputs = pipe(
|
44 |
-
# file,
|
45 |
-
# batch_size=BATCH_SIZE,
|
46 |
-
# return_timestamps=return_timestamps,
|
47 |
-
# )
|
48 |
-
# text = outputs["text"]
|
49 |
-
# if return_timestamps:
|
50 |
-
# timestamps = outputs["chunks"]
|
51 |
-
# timestamps = [
|
52 |
-
# f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}"
|
53 |
-
# for chunk in timestamps
|
54 |
-
# ]
|
55 |
-
# text = "\n".join(str(feature) for feature in timestamps)
|
56 |
-
# return text
|
57 |
-
|
58 |
-
|
59 |
-
# demo = gr.Interface(
|
60 |
-
# fn=transcribe,
|
61 |
-
# inputs=[
|
62 |
-
# #gr.Audio(label="Audio", type="filepath"),
|
63 |
-
# gr.Audio(sources=["upload", "microphone"], type="filepath"),
|
64 |
-
# gr.Checkbox(label="Return timestamps"),
|
65 |
-
# ],
|
66 |
-
# outputs=gr.Textbox(show_copy_button=True, label="Text"),
|
67 |
-
# title="Automatic Speech Recognition",
|
68 |
-
# examples=[
|
69 |
-
# ["examples/example.wav", False],
|
70 |
-
# ["examples/example.wav", True],
|
71 |
-
# ],
|
72 |
-
# cache_examples=True,
|
73 |
-
# allow_flagging="never",
|
74 |
-
# )
|
75 |
-
|
76 |
-
# demo.launch()
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
import torch
|
86 |
from transformers import pipeline
|
87 |
import gradio as gr
|
88 |
|
89 |
-
MODEL_NAME = "
|
90 |
BATCH_SIZE = 8
|
91 |
|
92 |
device = 0 if torch.cuda.is_available() else "cpu"
|
@@ -94,27 +10,64 @@ device = 0 if torch.cuda.is_available() else "cpu"
|
|
94 |
pipe = pipeline(
|
95 |
task="automatic-speech-recognition",
|
96 |
model=MODEL_NAME,
|
|
|
97 |
device=device,
|
|
|
98 |
)
|
99 |
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
return text
|
105 |
|
106 |
|
107 |
-
|
108 |
-
|
109 |
demo = gr.Interface(
|
110 |
fn=transcribe,
|
111 |
inputs=[
|
|
|
112 |
gr.Audio(sources=["upload", "microphone"], type="filepath"),
|
|
|
113 |
],
|
114 |
outputs=gr.Textbox(show_copy_button=True, label="Text"),
|
115 |
title="Automatic Speech Recognition",
|
116 |
examples=[
|
117 |
-
["examples/example.wav"],
|
|
|
118 |
],
|
119 |
cache_examples=True,
|
120 |
allow_flagging="never",
|
@@ -122,3 +75,10 @@ demo = gr.Interface(
|
|
122 |
|
123 |
demo.launch()
|
124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
from transformers import pipeline
|
3 |
import gradio as gr
|
4 |
|
5 |
+
MODEL_NAME = "Hemg/ASRr"
|
6 |
BATCH_SIZE = 8
|
7 |
|
8 |
device = 0 if torch.cuda.is_available() else "cpu"
|
|
|
10 |
pipe = pipeline(
|
11 |
task="automatic-speech-recognition",
|
12 |
model=MODEL_NAME,
|
13 |
+
chunk_length_s=30,
|
14 |
device=device,
|
15 |
+
return_timestamps='word'
|
16 |
)
|
17 |
|
18 |
|
19 |
+
# Copied from https://github.com/openai/whisper/blob/c09a7ae299c4c34c5839a76380ae407e7d785914/whisper/utils.py#L50
|
20 |
+
def format_timestamp(
|
21 |
+
seconds: float, always_include_hours: bool = False, decimal_marker: str = "."
|
22 |
+
):
|
23 |
+
if seconds is not None:
|
24 |
+
milliseconds = round(seconds * 1000.0)
|
25 |
+
|
26 |
+
hours = milliseconds // 3_600_000
|
27 |
+
milliseconds -= hours * 3_600_000
|
28 |
+
|
29 |
+
minutes = milliseconds // 60_000
|
30 |
+
milliseconds -= minutes * 60_000
|
31 |
+
|
32 |
+
seconds = milliseconds // 1_000
|
33 |
+
milliseconds -= seconds * 1_000
|
34 |
+
|
35 |
+
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
|
36 |
+
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
|
37 |
+
else:
|
38 |
+
# we have a malformed timestamp so just return it as is
|
39 |
+
return seconds
|
40 |
+
|
41 |
+
|
42 |
+
def transcribe(file, return_timestamps):
|
43 |
+
outputs = pipe(
|
44 |
+
file,
|
45 |
+
batch_size=BATCH_SIZE,
|
46 |
+
return_timestamps=return_timestamps,
|
47 |
+
)
|
48 |
+
text = outputs["text"]
|
49 |
+
if return_timestamps:
|
50 |
+
timestamps = outputs["chunks"]
|
51 |
+
timestamps = [
|
52 |
+
f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}"
|
53 |
+
for chunk in timestamps
|
54 |
+
]
|
55 |
+
text = "\n".join(str(feature) for feature in timestamps)
|
56 |
return text
|
57 |
|
58 |
|
|
|
|
|
59 |
demo = gr.Interface(
|
60 |
fn=transcribe,
|
61 |
inputs=[
|
62 |
+
#gr.Audio(label="Audio", type="filepath"),
|
63 |
gr.Audio(sources=["upload", "microphone"], type="filepath"),
|
64 |
+
gr.Checkbox(label="Return timestamps"),
|
65 |
],
|
66 |
outputs=gr.Textbox(show_copy_button=True, label="Text"),
|
67 |
title="Automatic Speech Recognition",
|
68 |
examples=[
|
69 |
+
["examples/example.wav", False],
|
70 |
+
["examples/example.wav", True],
|
71 |
],
|
72 |
cache_examples=True,
|
73 |
allow_flagging="never",
|
|
|
75 |
|
76 |
demo.launch()
|
77 |
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
|