Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Load the image classification pipeline
|
5 |
+
pipeline = pipeline(task="image-classification", model="Hemg/Melanoma-Cancer-Image-Classification")
|
6 |
+
|
7 |
+
def predict(input_img):
|
8 |
+
try:
|
9 |
+
# Use the pipeline to make predictions
|
10 |
+
predictions = pipeline(input_img)
|
11 |
+
# Process the predictions
|
12 |
+
result = {p["label"]: p["score"] for p in predictions}
|
13 |
+
except:
|
14 |
+
# If an exception occurs (e.g., out-of-context image), return a default result
|
15 |
+
result = {"out_of_context": 1.0}
|
16 |
+
|
17 |
+
# Return the input image and the result
|
18 |
+
return input_img, result
|
19 |
+
|
20 |
+
# Create a Gradio interface
|
21 |
+
gradio_app = gr.Interface(
|
22 |
+
predict,
|
23 |
+
inputs=gr.Image(label="Melanoma-Cancer-Image-classification", sources=['upload', 'webcam'], type="pil"),
|
24 |
+
outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
|
25 |
+
title="Benign ? Or Malignant?"
|
26 |
+
)
|
27 |
+
|
28 |
+
# Launch the Gradio app
|
29 |
+
if __name__ == "__main__":
|
30 |
+
gradio_app.launch()
|