File size: 878 Bytes
21d686f
 
 
3b5549d
21d686f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c903c0
21d686f
2aa6bfd
a6f56a5
21d686f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from transformers import pipeline
import gradio as gr

modelName = "Deepfake-image"
hfUser = "Hemg"

def prediction_function(inputFile):
    # get user name of their hugging face
    modelPath = hfUser + "/" + modelName
    # takes some time
    classifier = pipeline("image-classification", model=modelPath)

    try:
        result = classifier(inputFile)
        predictions = dict()
        labels = []
        for eachLabel in result:
            predictions[eachLabel["label"]] = eachLabel["score"]
            labels.append(eachLabel["label"])
        result = predictions
    except:
        result = "no data provided!!"

    return result


# change modelName parameter
def create_demo():
    demo = gr.Interface(
        fn=prediction_function,
        inputs=gr.Image(type="pil"),
        outputs=gr.Label(num_top_classes=2),
    )
    demo.launch()



create_demo()