Spaces:
Running
Running
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel | |
from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer | |
from transformers.generation.utils import GenerationConfig | |
from threading import Thread | |
# Loading the tokenizer and model from Hugging Face's model hub. | |
# model_name_or_path = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" | |
# tokenizer = AutoTokenizer.from_pretrained(model_name_or_path,trust_remote_code=True) | |
# model = AutoModelForCausalLM.from_pretrained(model_name,trust_remote_code=True) | |
# model_name_or_path = "Flmc/DISC-MedLLM" | |
# tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False, trust_remote_code=True) | |
# model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", torch_dtype=torch.float16, trust_remote_code=True) | |
# model.generation_config = GenerationConfig.from_pretrained(model_name_or_path) | |
model_name_or_path = "scutcyr/BianQue-2" | |
model = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True).half() | |
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path,trust_remote_code=True) | |
# using CUDA for an optimal experience | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model = model.to(device) | |
# Defining a custom stopping criteria class for the model's text generation. | |
class StopOnTokens(StoppingCriteria): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
stop_ids = [2] # IDs of tokens where the generation should stop. | |
for stop_id in stop_ids: | |
if input_ids[0][-1] == stop_id: # Checking if the last generated token is a stop token. | |
return True | |
return False | |
# Function to generate model predictions. | |
def predict(message, history): | |
history_transformer_format = history + [[message, ""]] | |
stop = StopOnTokens() | |
# Formatting the input for the model. | |
messages = "</s>".join(["</s>".join(["\n<|user|>:" + item[0], "\n<|assistant|>:" + item[1]]) | |
for item in history_transformer_format]) | |
model_inputs = tokenizer([messages], return_tensors="pt").to(device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
model_inputs, | |
streamer=streamer, | |
max_new_tokens=2048, | |
do_sample=True, | |
top_p=0.75, | |
top_k=50, | |
temperature=0.95, | |
num_beams=1, | |
# stopping_criteria=StoppingCriteriaList([stop]) 暫時拿掉 | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() # Starting the generation in a separate thread. | |
partial_message = "" | |
for new_token in streamer: | |
partial_message += new_token | |
if '</s>' in partial_message: # Breaking the loop if the stop token is generated. | |
break | |
yield partial_message | |
# Setting up the Gradio chat interface. | |
gr.ChatInterface(predict, | |
title="TCM_ChatBLM_chatBot", | |
description="Ask TCM_ChatBLM_chatBot any questions", | |
examples=['你好,我最近失眠,可以怎麼解決?', '請問有沒有跌打藥可以用?'] | |
).launch() # Launching the web interface. | |