Henok21's picture
Update app.py
08ff948
# Import a module
from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoModel, AutoTokenizer
from transformers import AutoTokenizer , pipeline , AutoConfig
import numpy as np
import gradio as gr
from scipy.special import softmax
import torch
# Loading requirements from Hugging Face
# HuggingFace path where the fine tuned model is placed
model_path = "Henok21/test_trainer"
# Loading the model
model = AutoModelForSequenceClassification.from_pretrained(model_path)
config = AutoConfig.from_pretrained(model_path)
# Loading tokenizer
tokenizer = AutoTokenizer.from_pretrained('bert-base-cased')
# Creating pipeline
calssifier = pipeline("sentiment-analysis" , model , tokenizer = tokenizer)
# Preparing gradio app
# Preprocessor Function
def preprocess(text):
new_text = []
for t in text.split(" "):
t = '@user' if t.startswith('@') and len(t) > 1 else t
t = 'http' if t.startswith('http') else t
new_text.append(t)
return " ".join(new_text)
# Configuring the outputs
config.id2label = {0: 'NEGATIVE', 1: 'NEUTRAL', 2: 'POSITIVE'}
config.label2id = {"NEGATIVE": 0, "NEUTRAL": 1, "POSITIVE": 2}
# creating a function used for gradio app
# Creating dictionary
dictionary = {}
def sentiment_analysis(text):
# Create a new dictionary
scores = {}
# Encode the text using the tokenizer
encoded_input = tokenizer(text, return_tensors='pt')
# Get the output logits from the model
output = model(**encoded_input)
# Your code to get the scores for each class
scores = output[0][0].detach().numpy()
scores = softmax(scores)
# Convert the numpy array into a list
scores = scores.tolist()
ranking = np.argsort(scores)
ranking = ranking[::-1]
for i in range(len(scores)):
l = config.id2label[ranking[i]]
s = scores[ranking[i]]
# Convert the numpy float32 object into a float
scores[l] = float(s)
# Return the dictionary as the response content
return scores
# Create your interface
demo = gr.Interface(
fn=sentiment_analysis,
inputs="text",
outputs="label"
)
# Launch your interface
demo.launch(debug = True)