Henok21 commited on
Commit
dc66d0c
·
1 Parent(s): e24d9ff

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -5
app.py CHANGED
@@ -41,22 +41,26 @@ config.label2id = {"NEGATIVE": 0, "NEUTRAL": 1, "POSITIVE": 2}
41
  # creating a function used for gradio app
42
  def sentiment_analysis(text):
43
 
 
 
 
44
  # Encode the text using the tokenizer
45
  encoded_input = tokenizer(text, return_tensors='pt')
46
  # Get the output logits from the model
47
  output = model(**encoded_input)
48
-
49
  # Your code to get the scores for each class
50
  scores = output[0][0].detach().numpy()
51
  scores = softmax(scores)
52
-
53
  labels = {0: "NEGAITVE", 1: "NEUTRAL", 2: "POSITIVE"}
54
- scores = {labels[i] float(s) for i , s in enumerate(scores) }
55
-
56
-
57
  # Return the dictionary as the response content
58
  return scores
59
 
 
 
60
  # Create your interface
61
  demo = gr.Interface(
62
  fn=sentiment_analysis,
 
41
  # creating a function used for gradio app
42
  def sentiment_analysis(text):
43
 
44
+ # Create a new dictionary
45
+ scores = {}
46
+
47
  # Encode the text using the tokenizer
48
  encoded_input = tokenizer(text, return_tensors='pt')
49
  # Get the output logits from the model
50
  output = model(**encoded_input)
51
+
52
  # Your code to get the scores for each class
53
  scores = output[0][0].detach().numpy()
54
  scores = softmax(scores)
55
+
56
  labels = {0: "NEGAITVE", 1: "NEUTRAL", 2: "POSITIVE"}
57
+ scores = {labels[i]: float(s) for i , s in enumerate(scores) }
58
+
 
59
  # Return the dictionary as the response content
60
  return scores
61
 
62
+
63
+
64
  # Create your interface
65
  demo = gr.Interface(
66
  fn=sentiment_analysis,