Henamen21
add app
6a8400d
# Importing module
from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoModel, AutoTokenizer
from transformers import AutoTokenizer , pipeline , AutoConfig
import numpy as np
import gradio as gr
from scipy.special import softmax
# HuggingFace path where the fine tuned model is placed
model_path = "Henok21/test_trainer"
# Loading the model
model = AutoModelForSequenceClassification.from_pretrained(model_path)
# Loading config file
config = AutoConfig.from_pretrained(model_path)
# Loading tokenizer
tokenizer = AutoTokenizer.from_pretrained('bert-base-cased')
# Using pipeline
calssifier = pipeline("sentiment-analysis" , model , tokenizer = tokenizer)
# Preprocessor Function
def preprocess(text):
new_text = []
for t in text.split(" "):
t = '@user' if t.startswith('@') and len(t) > 1 else t
t = 'http' if t.startswith('http') else t
new_text.append(t)
return " ".join(new_text)
# Adjusting config
config.id2label = {0: 'NEGATIVE', 1: 'NEUTRAL', 2: 'POSITIVE'}
# Function used for gradio app
def sentiment_analysis(text):
# Your code to get the scores for each class
scores = output[0][0].detach().numpy()
scores = softmax(scores)
# Convert the numpy array into a list
scores = scores.tolist()
# Print labels and scores
ranking = np.argsort(scores)
ranking = ranking[::-1]
for i in range(len(scores)):
l = config.id2label[ranking[i]]
s = scores[ranking[i]]
a = f"{i+1}) {l} {np.round(float(s), 4)}"
# Convert the numpy float32 object into a float
d[l] = float(s)
# Return the dictionary as the response content
return d
# Create your interface
demo = gr.Interface(fn=sentiment_analysis, inputs="text", outputs="label")
# Launch your interface
demo.launch(debug = True)