File size: 18,084 Bytes
43515a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
import re
import json
import nltk
import joblib
import torch
import pandas as pd
import numpy as np
import streamlit as st
from pathlib import Path
from torch import nn
from docarray import DocList
from docarray.index import InMemoryExactNNIndex
from transformers import pipeline
from transformers import AutoTokenizer, AutoModel
from data.repo_doc import RepoDoc
from data.pair_classifier import PairClassifier
from nltk.stem import WordNetLemmatizer
nltk.download("wordnet")
KMEANS_MODEL_PATH = Path(__file__).parent.joinpath("data/kmeans_model_scibert.pkl")
SIMILARITY_CAL_MODEL_PATH = Path(__file__).parent.joinpath("data/SimilarityCal_model_NO1.pt")
device = (
"cuda"
if torch.cuda.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
# 1. Product environment
# INDEX_PATH = Path(__file__).parent.joinpath("data/index.bin")
# CLUSTER_PATH = Path(__file__).parent.joinpath("data/repo_clusters.json")
SCIBERT_MODEL_PATH = "allenai/scibert_scivocab_uncased"
# 2. Developing environment
INDEX_PATH = Path(__file__).parent.joinpath("data/index_test.bin")
CLUSTER_PATH = Path(__file__).parent.joinpath("data/repo_clusters_test.json")
# SCIBERT_MODEL_PATH = Path(__file__).parent.joinpath("data/scibert_scivocab_uncased") # Download locally
@st.cache_resource(show_spinner="Loading repositories basic information...")
def load_index():
"""
The function to load the index file and return a RepoDoc object with default value
:return: index and a RepoDoc object with default value
"""
default_doc = RepoDoc(
name="",
topics=[],
stars=0,
license="",
code_embedding=None,
doc_embedding=None,
readme_embedding=None,
requirement_embedding=None,
repository_embedding=None
)
return InMemoryExactNNIndex[RepoDoc](index_file_path=INDEX_PATH), default_doc
@st.cache_resource(show_spinner="Loading repositories clusters...")
def load_repo_clusters():
"""
The function to load the repo-clusters file
:return: a dictionary with the repo-clusters
"""
with open(CLUSTER_PATH, "r") as file:
repo_clusters = json.load(file)
return repo_clusters
@st.cache_resource(show_spinner="Loading RepoSim4Py pipeline model...")
def load_pipeline_model():
"""
The function to load RepoSim4Py pipeline model
:return: a HuggingFace pipeline
"""
# Option 1 --- Download model by HuggingFace username/model_name
model_path = "Henry65/RepoSim4Py"
# Option 2 --- Download model locally
# model_path = Path(__file__).parent.joinpath("data/RepoSim4Py")
return pipeline(
model=model_path,
trust_remote_code=True,
device_map="auto"
)
@st.cache_resource(show_spinner="Loading SciBERT model...")
def load_scibert_model():
"""
The function to load SciBERT model
:return: tokenizer and model
"""
tokenizer = AutoTokenizer.from_pretrained(SCIBERT_MODEL_PATH)
scibert_model = AutoModel.from_pretrained(SCIBERT_MODEL_PATH).to(device)
return tokenizer, scibert_model
@st.cache_resource(show_spinner="Loading KMeans model...")
def load_kmeans_model():
"""
The function to load KMeans model
:return: a KMeans model
"""
return joblib.load(KMEANS_MODEL_PATH)
@st.cache_resource(show_spinner="Loading SimilarityCal model...")
def load_similaritycal_model():
sim_cal_model = PairClassifier()
sim_cal_model.load_state_dict(torch.load(SIMILARITY_CAL_MODEL_PATH))
sim_cal_model = sim_cal_model.to(device)
sim_cal_model = sim_cal_model.eval()
return sim_cal_model
def generate_scibert_embedding(tokenizer, scibert_model, text):
"""
The function for generating SciBERT embeddings based on topic text
:param text: the topic text
:return: topic embeddings
"""
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512).to(device)
outputs = scibert_model(**inputs)
# Use mean pooling for sentence representation
embeddings = outputs.last_hidden_state.mean(dim=1).cpu().detach().numpy()
return embeddings
@st.cache_data(show_spinner=False)
def run_pipeline_model(_model, repo_name, github_token):
"""
The function to generate repo_info by using pipeline model
:param _model: pipeline
:param repo_name: the name of repository
:param github_token: GitHub token
:return: the information generated by the pipeline
"""
with st.spinner(
f"Downloading and extracting the {repo_name}, this may take a while..."
):
extracted_infos = _model.preprocess(repo_name, github_token=github_token)
if not extracted_infos:
return None
with st.spinner(f"Generating embeddings for {repo_name}..."):
repo_info = _model.forward(extracted_infos)[0]
return repo_info
def run_index_search(index, query, search_field, limit):
"""
The function to search at index file based on query and limit
:param index: the index
:param query: query
:param search_field: which field to search for
:param limit: page limit
:return: a dataframe with search results
"""
top_matches, scores = index.find(
query=query, search_field=search_field, limit=limit
)
search_results = top_matches.to_dataframe()
search_results["scores"] = scores
return search_results
def run_cluster_search(repo_clusters, repo_name_list):
"""
The function to search cluster number for such repositories.
:param repo_clusters: dictionary with repo-clusters
:param repo_name_list: list or array represent repository names
:return: cluster number list
"""
clusters = []
for repo_name in repo_name_list:
clusters.append(repo_clusters[repo_name])
return clusters
def run_similaritycal_search(index, repo_clusters, model, query_doc, query_cluster_number, limit, same_cluster=True):
"""
The function to run SimilarityCal model.
:param index: index file
:param repo_clusters: repo-clusters json file
:param model: SimilarityCal model
:param query_doc: query repo doc
:param query_cluster_number: query repo cluster number
:param limit: limit
:param same_cluster: whether searching for same cluster
:return: result dataframe
"""
docs = index._docs
input_embeddings_list = []
result_dl = DocList[RepoDoc]()
for doc in docs:
if same_cluster and query_cluster_number != repo_clusters[doc.name]:
continue
if doc.name != query_doc.name:
e1, e2 = (torch.Tensor(query_doc.repository_embedding),
torch.Tensor(doc.repository_embedding))
input_embeddings = torch.cat([e1, e2])
input_embeddings_list.append(input_embeddings)
result_dl.append(doc)
input_embeddings_list = torch.stack(input_embeddings_list).to(device)
softmax = nn.Softmax(dim=1).to(device)
model_output = model(input_embeddings_list)
similarity_scores = softmax(model_output)[:, 1].cpu().detach().numpy()
df = result_dl.to_dataframe()
df["scores"] = similarity_scores
return df.sort_values(by='scores', ascending=False).reset_index(drop=True).head(limit)
if __name__ == "__main__":
# Loading dataset and models
index, default_doc = load_index()
repo_clusters = load_repo_clusters()
pipeline_model = load_pipeline_model()
lemmatizer = WordNetLemmatizer()
tokenizer, scibert_model = load_scibert_model()
kmeans = load_kmeans_model()
sim_cal_model = load_similaritycal_model()
# Setting the sidebar
with st.sidebar:
st.text_input(
label="GitHub Token",
key="github_token",
type="password",
placeholder="Paste your GitHub token here",
help="Consider setting GitHub token to avoid hitting rate limits: https://docs.github.com/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token",
)
st.slider(
label="Search results limit",
min_value=1,
max_value=100,
value=10,
step=1,
key="search_results_limit",
help="Limit the number of search results",
)
st.multiselect(
label="Display columns",
options=["scores", "name", "topics", "cluster number", "stars", "license"],
default=["scores", "name", "topics", "cluster number", "stars", "license"],
help="Select columns to display in the search results",
key="display_columns",
)
# Setting the main content
st.title("RepoSnipy")
st.text_input(
"Enter a GitHub repository URL or owner/repository (case-sensitive):",
value="",
max_chars=200,
placeholder="numpy/numpy",
key="repo_input",
)
st.checkbox(
label="Add/Update this repository to the index",
value=False,
key="update_index",
help="Encode the latest version of this repository and add/update it to the index",
)
# Setting the search button
search = st.button("Search")
# The regular expression for repository
repo_regex = r"^((git@|http(s)?://)?(github\.com)(/|:))?(?P<owner>[\w.-]+)(/)(?P<repo>[\w.-]+?)(\.git)?(/)?$"
if search:
match_res = re.match(repo_regex, st.session_state.repo_input)
# 1. Repository can be matched
if match_res is not None:
repo_name = f"{match_res.group('owner')}/{match_res.group('repo')}"
records = index.filter({"name": {"$eq": repo_name}})
# 1) Building the query information
query_doc = default_doc.copy() if not records else records[0]
# 2) Recording the cluster number
cluster_number = -1 if not records else repo_clusters[repo_name]
# Importance 1 ---- situation need to update repository information and cluster number
if st.session_state.update_index or not records:
# 1) Updating repository information by using RepoSim4Py pipeline
repo_info = run_pipeline_model(pipeline_model, repo_name, st.session_state.github_token)
if repo_info is None:
st.error("Repository not found or invalid GitHub token!")
st.stop()
query_doc.name = repo_info["name"]
query_doc.topics = repo_info["topics"]
query_doc.stars = repo_info["stars"]
query_doc.license = repo_info["license"]
query_doc.code_embedding = None if np.all(repo_info["mean_code_embedding"] == 0) else repo_info[
"mean_code_embedding"].reshape(-1)
query_doc.doc_embedding = None if np.all(repo_info["mean_doc_embedding"] == 0) else repo_info[
"mean_doc_embedding"].reshape(-1)
query_doc.readme_embedding = None if np.all(repo_info["mean_readme_embedding"] == 0) else repo_info[
"mean_readme_embedding"].reshape(-1)
query_doc.requirement_embedding = None if np.all(repo_info["mean_requirement_embedding"] == 0) else \
repo_info["mean_requirement_embedding"].reshape(-1)
query_doc.repository_embedding = None if np.all(repo_info["mean_repo_embedding"] == 0) else repo_info[
"mean_repo_embedding"].reshape(-1)
# 2) Updating cluster number
topics_text = ' '.join(
[lemmatizer.lemmatize(topic.lower().replace('-', ' ')) for topic in query_doc.topics])
topic_embeddings = generate_scibert_embedding(tokenizer, scibert_model, topics_text)
cluster_number = int(kmeans.predict(topic_embeddings)[0])
# Importance 2 ---- update index file and repository clusters file
if st.session_state.update_index:
if not query_doc.license:
st.warning(
"License is missing in this repository and will not be persisted!"
)
elif (query_doc.code_embedding is None) and (query_doc.doc_embedding is None) and (
query_doc.requirement_embedding is None) and (query_doc.readme_embedding is None) and (
query_doc.repository_embedding is None):
st.warning(
"This repository has no such useful information (code, docstring, readme and requirement) extracted and will not be persisted!"
)
else:
index.index(query_doc)
repo_clusters[query_doc.name] = cluster_number
with st.spinner("Persisting the index and repository clusters..."):
index.persist(str(INDEX_PATH))
with open(CLUSTER_PATH, "w") as file:
json.dump(repo_clusters, file, indent=4)
st.success("Repository updated to the index!")
load_index.clear()
load_repo_clusters.clear()
st.session_state["query_doc"] = query_doc
st.session_state["cluster_number"] = cluster_number
# 2. Repository cannot be matched
else:
st.error("Invalid input!")
# Starting to query
if "query_doc" in st.session_state:
query_doc = st.session_state.query_doc
cluster_number = st.session_state.cluster_number
limit = st.session_state.search_results_limit
# Showing the query repository information
st.dataframe(
pd.DataFrame(
[
{
"name": query_doc.name,
"topics": query_doc.topics,
"cluster number": cluster_number,
"stars": query_doc.stars,
"license": query_doc.license,
}
],
)
)
display_columns = st.session_state.display_columns
code_sim_tab, doc_sim_tab, readme_sim_tab, requirement_sim_tab, repo_sim_tab, same_cluster_tab, diff_cluster_tab = st.tabs(
["Code_sim", "Docstring_sim", "Readme_sim", "Requirement_sim",
"Repository_sim", "Same_cluster", "Different_cluster"])
if query_doc.code_embedding is not None:
code_sim_res = run_index_search(index, query_doc, "code_embedding", limit)
cluster_numbers = run_cluster_search(repo_clusters, code_sim_res["name"])
code_sim_res["cluster number"] = cluster_numbers
code_sim_tab.dataframe(code_sim_res[display_columns])
else:
code_sim_tab.error("No function code was extracted for this repository!")
if query_doc.doc_embedding is not None:
doc_sim_res = run_index_search(index, query_doc, "doc_embedding", limit)
cluster_numbers = run_cluster_search(repo_clusters, doc_sim_res["name"])
doc_sim_res["cluster number"] = cluster_numbers
doc_sim_tab.dataframe(doc_sim_res[display_columns])
else:
doc_sim_tab.error("No function docstring was extracted for this repository!")
if query_doc.readme_embedding is not None:
readme_sim_res = run_index_search(index, query_doc, "readme_embedding", limit)
cluster_numbers = run_cluster_search(repo_clusters, readme_sim_res["name"])
readme_sim_res["cluster number"] = cluster_numbers
readme_sim_tab.dataframe(readme_sim_res[display_columns])
else:
readme_sim_tab.error("No readme file was extracted for this repository!")
if query_doc.requirement_embedding is not None:
requirement_sim_res = run_index_search(index, query_doc, "requirement_embedding", limit)
cluster_numbers = run_cluster_search(repo_clusters, requirement_sim_res["name"])
requirement_sim_res["cluster number"] = cluster_numbers
requirement_sim_tab.dataframe(requirement_sim_res[display_columns])
else:
requirement_sim_tab.error("No requirement file was extracted for this repository!")
if query_doc.repository_embedding is not None:
repo_sim_res = run_index_search(index, query_doc, "repository_embedding", limit)
cluster_numbers = run_cluster_search(repo_clusters, repo_sim_res["name"])
repo_sim_res["cluster number"] = cluster_numbers
repo_sim_tab.dataframe(repo_sim_res[display_columns])
else:
repo_sim_tab.error("No such useful information was extracted for this repository!")
if cluster_number is not None and query_doc.repository_embedding is not None:
same_cluster_df = run_similaritycal_search(index, repo_clusters, sim_cal_model,
query_doc, cluster_number, limit,
same_cluster=True)
diff_cluster_df = run_similaritycal_search(index, repo_clusters, sim_cal_model,
query_doc, cluster_number, limit,
same_cluster=False)
same_cluster_numbers = run_cluster_search(repo_clusters, same_cluster_df["name"])
same_cluster_df["cluster number"] = same_cluster_numbers
diff_cluster_numbers = run_cluster_search(repo_clusters, diff_cluster_df["name"])
diff_cluster_df["cluster number"] = diff_cluster_numbers
same_cluster_tab.dataframe(same_cluster_df[display_columns])
diff_cluster_tab.dataframe(diff_cluster_df[display_columns])
else:
same_cluster_tab.error("No such useful information was extracted for this repository!")
diff_cluster_tab.error("No such useful information was extracted for this repository!")
|