Spaces:
Running
Running
### ----------------------------- ### | |
### libraries ### | |
### ----------------------------- ### | |
import gradio as gr | |
import pandas as pd | |
import numpy as np | |
from sklearn.model_selection import train_test_split | |
from sklearn.linear_model import LogisticRegression | |
from sklearn import metrics | |
### ------------------------------ ### | |
### data transformation ### | |
### ------------------------------ ### | |
# load dataset | |
uncleaned_data = pd.read_csv('data.csv') | |
# remove timestamp from dataset (always first column) | |
uncleaned_data = uncleaned_data.iloc[: , 1:] | |
data = pd.DataFrame() | |
# keep track of which columns are categorical and what | |
# those columns' value mappings are | |
# structure: {colname1: {...}, colname2: {...} } | |
cat_value_dicts = {} | |
final_colname = uncleaned_data.columns[len(uncleaned_data.columns) - 1] | |
# for each column... | |
for (colname, colval) in uncleaned_data.iteritems(): | |
# check if col is already a number; if so, add col directly | |
# to new dataframe and skip to next column | |
if isinstance(colval.values[0], (np.integer, float)): | |
data[colname] = uncleaned_data[colname].copy() | |
continue | |
# structure: {0: "lilac", 1: "blue", ...} | |
new_dict = {} | |
val = 0 # first index per column | |
transformed_col_vals = [] # new numeric datapoints | |
# if not, for each item in that column... | |
for (row, item) in enumerate(colval.values): | |
# if item is not in this col's dict... | |
if item not in new_dict: | |
new_dict[item] = val | |
val += 1 | |
# then add numerical value to transformed dataframe | |
transformed_col_vals.append(new_dict[item]) | |
# reverse dictionary only for final col (0, 1) => (vals) | |
if colname == final_colname: | |
new_dict = {value : key for (key, value) in new_dict.items()} | |
cat_value_dicts[colname] = new_dict | |
data[colname] = transformed_col_vals | |
### -------------------------------- ### | |
### model training ### | |
### -------------------------------- ### | |
# select features and predicton; automatically selects last column as prediction | |
cols = len(data.columns) | |
num_features = cols - 1 | |
x = data.iloc[: , :num_features] | |
y = data.iloc[: , num_features:] | |
# split data into training and testing sets | |
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25) | |
# instantiate the model (using default parameters) | |
model = LogisticRegression() | |
model.fit(x_train, y_train.values.ravel()) | |
y_pred = model.predict(x_test) | |
### -------------------------------- ### | |
### article generation ### | |
### -------------------------------- ### | |
# borrow file reading function from reader.py | |
def get_feat(): | |
feats = [abs(x) for x in model.coef_[0]] | |
max_val = max(feats) | |
idx = feats.index(max_val) | |
return data.columns[idx] | |
acc = str(round(metrics.accuracy_score(y_test, y_pred) * 100, 1)) + "%" | |
most_imp_feat = get_feat() | |
# info = get_article(acc, most_imp_feat) | |
### ------------------------------- ### | |
### interface creation ### | |
### ------------------------------- ### | |
# predictor for generic number of features | |
def general_predictor(*args): | |
features = [] | |
# transform categorical input | |
for colname, arg in zip(data.columns, args): | |
if (colname in cat_value_dicts): | |
features.append(cat_value_dicts[colname][arg]) | |
else: | |
features.append(arg) | |
# predict single datapoint | |
new_input = [features] | |
result = model.predict(new_input) | |
return cat_value_dicts[final_colname][result[0]] | |
# add data labels to replace those lost via star-args | |
block = gr.Blocks() | |
with open('info.md') as f: | |
with block: | |
gr.Markdown(f.readline()) | |
gr.Markdown('Take the quiz to get a personalized recommendation using AI.') | |
with gr.Row(): | |
with gr.Box(): | |
inputls = [] | |
for colname in data.columns: | |
# skip last column | |
if colname == final_colname: | |
continue | |
# access categories dict if data is categorical | |
# otherwise, just use a number input | |
if colname in cat_value_dicts: | |
radio_options = list(cat_value_dicts[colname].keys()) | |
inputls.append(gr.inputs.Dropdown(choices=radio_options, type="value", label=colname)) | |
else: | |
# add numerical input | |
inputls.append(gr.inputs.Number(label=colname)) | |
gr.Markdown("<br />") | |
submit = gr.Button("Click to see your personalized result!", variant="primary") | |
gr.Markdown("<br />") | |
output = gr.Textbox(label="Your recommendation:", placeholder="your recommendation will appear here") | |
submit.click(fn=general_predictor, inputs=inputls, outputs=output) | |
gr.Markdown("<br />") | |
with gr.Row(): | |
with gr.Box(): | |
gr.Markdown(f"<h3>Accuracy: </h3>{acc}") | |
with gr.Box(): | |
gr.Markdown(f"<h3>Most important feature: </h3>{most_imp_feat}") | |
gr.Markdown("<br />") | |
with gr.Box(): | |
gr.Markdown('''⭐ Note that model accuracy is based on the uploaded data.csv and reflects how well the AI model can give correct recommendations for <em>that dataset</em>. Model accuracy and most important feature can be helpful for understanding how the model works, but <em>should not be considered absolute facts about the real world</em>.''') | |
with gr.Box(): | |
with open('info.md') as f: | |
f.readline() | |
gr.Markdown(f.read()) | |
# show the interface | |
block.launch() |