Update app.py
Browse files
app.py
CHANGED
@@ -11,20 +11,20 @@ model_path = "deepseek-ai/deepseek-vl-1.3b-chat"
|
|
11 |
vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
|
12 |
tokenizer = vl_chat_processor.tokenizer
|
13 |
|
14 |
-
|
15 |
-
def describe_image(image, user_question="
|
16 |
try:
|
17 |
-
# Convert the PIL Image to a BytesIO object
|
18 |
image_byte_arr = BytesIO()
|
19 |
-
image.save(image_byte_arr, format="PNG")
|
20 |
-
image_byte_arr.seek(0)
|
21 |
|
22 |
-
# Define the conversation
|
23 |
conversation = [
|
24 |
{
|
25 |
"role": "User",
|
26 |
"content": f"<image_placeholder>{user_question}",
|
27 |
-
"images": [image_byte_arr]
|
28 |
},
|
29 |
{
|
30 |
"role": "Assistant",
|
@@ -32,42 +32,30 @@ def describe_image(image, user_question="You are the best AP teacher in the worl
|
|
32 |
}
|
33 |
]
|
34 |
|
35 |
-
# Convert
|
36 |
-
pil_images = [Image.open(BytesIO(image_byte_arr.read()))]
|
37 |
-
image_byte_arr.seek(0)
|
38 |
|
39 |
-
#
|
40 |
prepare_inputs = vl_chat_processor(
|
41 |
conversations=conversation,
|
42 |
images=pil_images,
|
43 |
force_batchify=True
|
44 |
-
)
|
45 |
-
|
46 |
-
# Explicitly cast all tensors in prepare_inputs to torch.float16
|
47 |
-
prepare_inputs = {
|
48 |
-
k: v.to(torch.float16) if isinstance(v, torch.Tensor) else v
|
49 |
-
for k, v in prepare_inputs.items()
|
50 |
-
}
|
51 |
-
|
52 |
-
# Load and prepare the model
|
53 |
-
vl_gpt = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).to(torch.float16).eval()
|
54 |
-
vl_gpt = vl_gpt.to(torch.float16) # Explicitly ensure all components are in float16
|
55 |
|
56 |
-
#
|
57 |
-
|
|
|
|
|
|
|
58 |
|
59 |
-
#
|
60 |
-
|
61 |
|
62 |
-
#
|
63 |
-
print(f"Inputs Embeds dtype: {inputs_embeds.dtype}")
|
64 |
-
print(f"Attention Mask dtype: {attention_mask.dtype}")
|
65 |
-
print(f"Model dtype: {next(vl_gpt.parameters()).dtype}")
|
66 |
-
|
67 |
-
# Generate the model's response
|
68 |
outputs = vl_gpt.language_model.generate(
|
69 |
-
inputs_embeds=inputs_embeds
|
70 |
-
attention_mask=attention_mask
|
71 |
pad_token_id=tokenizer.eos_token_id,
|
72 |
bos_token_id=tokenizer.bos_token_id,
|
73 |
eos_token_id=tokenizer.eos_token_id,
|
@@ -76,36 +64,36 @@ def describe_image(image, user_question="You are the best AP teacher in the worl
|
|
76 |
use_cache=True
|
77 |
)
|
78 |
|
79 |
-
# Decode the
|
80 |
-
answer = tokenizer.decode(outputs[0].
|
81 |
return answer
|
|
|
82 |
except Exception as e:
|
83 |
-
# Provide detailed error information
|
84 |
return f"Error: {str(e)}"
|
|
|
85 |
# Gradio interface
|
86 |
def gradio_app():
|
87 |
with gr.Blocks() as demo:
|
88 |
-
gr.Markdown("# Image Description with DeepSeek VL 1.3b
|
89 |
|
90 |
with gr.Row():
|
91 |
image_input = gr.Image(type="pil", label="Upload an Image")
|
92 |
question_input = gr.Textbox(
|
93 |
label="Question (optional)",
|
94 |
-
placeholder="Ask a question about the image
|
95 |
lines=2
|
96 |
)
|
97 |
|
98 |
-
output_text = gr.Textbox(label="
|
99 |
-
|
100 |
-
submit_btn = gr.Button("Solve")
|
101 |
|
102 |
submit_btn.click(
|
103 |
fn=describe_image,
|
104 |
-
inputs=[image_input, question_input],
|
105 |
outputs=output_text
|
106 |
)
|
107 |
|
108 |
demo.launch()
|
109 |
|
110 |
-
# Launch the
|
111 |
-
gradio_app()
|
|
|
11 |
vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
|
12 |
tokenizer = vl_chat_processor.tokenizer
|
13 |
|
14 |
+
# Define the function for image description (CPU version)
|
15 |
+
def describe_image(image, user_question="Describe this image in great detail."):
|
16 |
try:
|
17 |
+
# Convert the PIL Image to a BytesIO object
|
18 |
image_byte_arr = BytesIO()
|
19 |
+
image.save(image_byte_arr, format="PNG")
|
20 |
+
image_byte_arr.seek(0)
|
21 |
|
22 |
+
# Define the conversation
|
23 |
conversation = [
|
24 |
{
|
25 |
"role": "User",
|
26 |
"content": f"<image_placeholder>{user_question}",
|
27 |
+
"images": [image_byte_arr]
|
28 |
},
|
29 |
{
|
30 |
"role": "Assistant",
|
|
|
32 |
}
|
33 |
]
|
34 |
|
35 |
+
# Convert byte array back to PIL image
|
36 |
+
pil_images = [Image.open(BytesIO(image_byte_arr.read()))]
|
37 |
+
image_byte_arr.seek(0)
|
38 |
|
39 |
+
# Prepare inputs with CPU and float32 type
|
40 |
prepare_inputs = vl_chat_processor(
|
41 |
conversations=conversation,
|
42 |
images=pil_images,
|
43 |
force_batchify=True
|
44 |
+
).to(torch.float32) # Convert to float32 for CPU compatibility
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
# Load model with CPU and float32 weights
|
47 |
+
vl_gpt = AutoModelForCausalLM.from_pretrained(
|
48 |
+
model_path,
|
49 |
+
trust_remote_code=True
|
50 |
+
).float().eval() # Convert all weights to float32
|
51 |
|
52 |
+
# Generate embeddings with CPU
|
53 |
+
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
|
54 |
|
55 |
+
# Generate response with CPU
|
|
|
|
|
|
|
|
|
|
|
56 |
outputs = vl_gpt.language_model.generate(
|
57 |
+
inputs_embeds=inputs_embeds,
|
58 |
+
attention_mask=prepare_inputs.attention_mask,
|
59 |
pad_token_id=tokenizer.eos_token_id,
|
60 |
bos_token_id=tokenizer.bos_token_id,
|
61 |
eos_token_id=tokenizer.eos_token_id,
|
|
|
64 |
use_cache=True
|
65 |
)
|
66 |
|
67 |
+
# Decode the response
|
68 |
+
answer = tokenizer.decode(outputs[0].tolist(), skip_special_tokens=True)
|
69 |
return answer
|
70 |
+
|
71 |
except Exception as e:
|
|
|
72 |
return f"Error: {str(e)}"
|
73 |
+
|
74 |
# Gradio interface
|
75 |
def gradio_app():
|
76 |
with gr.Blocks() as demo:
|
77 |
+
gr.Markdown("# Image Description with DeepSeek VL 1.3b 🐬 (CPU Version)")
|
78 |
|
79 |
with gr.Row():
|
80 |
image_input = gr.Image(type="pil", label="Upload an Image")
|
81 |
question_input = gr.Textbox(
|
82 |
label="Question (optional)",
|
83 |
+
placeholder="Ask a question about the image",
|
84 |
lines=2
|
85 |
)
|
86 |
|
87 |
+
output_text = gr.Textbox(label="Image Description", interactive=False)
|
88 |
+
submit_btn = gr.Button("Generate Description")
|
|
|
89 |
|
90 |
submit_btn.click(
|
91 |
fn=describe_image,
|
92 |
+
inputs=[image_input, question_input],
|
93 |
outputs=output_text
|
94 |
)
|
95 |
|
96 |
demo.launch()
|
97 |
|
98 |
+
# Launch the app
|
99 |
+
gradio_app()
|