HenryShan commited on
Commit
4131f20
·
verified ·
1 Parent(s): e1bcd6a
Files changed (1) hide show
  1. app.py +3 -5
app.py CHANGED
@@ -5,15 +5,13 @@ from deepseek_vl.models import VLChatProcessor, MultiModalityCausalLM
5
  from deepseek_vl.utils.io import load_pil_images
6
  from io import BytesIO
7
  from PIL import Image
8
- import spaces # Import spaces for ZeroGPU support
9
 
10
  # Load the model and processor
11
  model_path = "deepseek-ai/deepseek-vl-1.3b-chat"
12
  vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
13
  tokenizer = vl_chat_processor.tokenizer
14
 
15
- # Define the function for image description with ZeroGPU support
16
- @spaces.GPU # Ensures GPU allocation for this function
17
  def describe_image(image, user_question="Solve the problem in the image"):
18
  try:
19
  # Convert the PIL Image to a BytesIO object for compatibility
@@ -43,10 +41,10 @@ def describe_image(image, user_question="Solve the problem in the image"):
43
  conversations=conversation,
44
  images=pil_images,
45
  force_batchify=True
46
- ).to('cuda')
47
 
48
  # Load and prepare the model
49
- vl_gpt = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).to(torch.bfloat16).cuda().eval()
50
 
51
  # Generate embeddings from the image input
52
  inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
 
5
  from deepseek_vl.utils.io import load_pil_images
6
  from io import BytesIO
7
  from PIL import Image
 
8
 
9
  # Load the model and processor
10
  model_path = "deepseek-ai/deepseek-vl-1.3b-chat"
11
  vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
12
  tokenizer = vl_chat_processor.tokenizer
13
 
14
+ # Define the function for image description (CPU-only)
 
15
  def describe_image(image, user_question="Solve the problem in the image"):
16
  try:
17
  # Convert the PIL Image to a BytesIO object for compatibility
 
41
  conversations=conversation,
42
  images=pil_images,
43
  force_batchify=True
44
+ ).to('cpu') # Move inputs to CPU
45
 
46
  # Load and prepare the model
47
+ vl_gpt = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).to(torch.bfloat16).cpu().eval() # Move model to CPU
48
 
49
  # Generate embeddings from the image input
50
  inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)