from fastapi import FastAPI from pydantic import BaseModel import pickle import pandas as pd import numpy as np import uvicorn import os # call the app app = FastAPI(title="API") # Load the model and scaler #def load_model_and_scaler(): def load_model(): with open("model.pkl", "rb") as f1, open("scaler.pkl", "rb") as f2: return pickle.load(f1), pickle.load(f2) model = load_model scaler = () #model, scaler = load_model_and_scaler() def predict(df, endpoint="simple"): # Scaling scaled_df = scaler.transform(df) # Prediction prediction = model.predict_proba(scaled_df) highest_proba = prediction.max(axis=1) predicted_labels = ["Patient does not have sepsis" if i == 0 else f"Patient has sepsis" for i in highest_proba] print(f"Predicted labels: {predicted_labels}") print(highest_proba) response = [] for label, proba in zip(predicted_labels, highest_proba): output = { "prediction": label, "probability of prediction": str(round(proba * 100)) + '%' } response.append(output) return response class Patient(BaseModel): Blood_Work_R1: int Blood_Pressure: int Blood_Work_R3: int BMI: float Blood_Work_R4: float Patient_age: int class Patients(BaseModel): all_patients: list[Patient] @classmethod def return_list_of_dict(cls, patients: "Patients"): patient_list = [] for patient in patients.all_patients: patient_dict = patient.dict() patient_list.append(patient_dict) return patient_list # Endpoints # Root Endpoint @app.get("/") def root(): return {"API": "This is an API for sepsis prediction."} # Prediction endpoint @app.post("/predict") def predict_sepsis(patient: Patient): # Make prediction data = pd.DataFrame(patient.dict(), index=[0]) parsed = predict(df=data) return {"output": parsed} # Multiple Prediction Endpoint @app.post("/predict_multiple") def predict_sepsis_for_multiple_patients(patients: Patients): """Make prediction with the passed data""" data = pd.DataFrame(Patients.return_list_of_dict(patients)) parsed = predict(df=data, endpoint="multi") return {"output": parsed} if __name__ == "__main__": uvicorn.run("main:app", reload=True)