Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,16 +5,21 @@ from diffusers import DiffusionPipeline
|
|
5 |
pipeline = None
|
6 |
|
7 |
# Load the pipeline and LoRA weights
|
8 |
-
def load_cust(modelsyu):
|
|
|
|
|
9 |
pipeline = DiffusionPipeline.from_pretrained(modelsyu)
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
13 |
def generate_image(prompt, negative_prompt):
|
14 |
global pipeline
|
15 |
# Generate the image with the provided prompts
|
16 |
if pipeline is None:
|
17 |
return "Pipeline not loaded. Please load the models first."
|
|
|
|
|
18 |
image = pipeline(prompt, negative_prompt=negative_prompt).images[0]
|
19 |
return image
|
20 |
|
@@ -27,7 +32,7 @@ with gr.Blocks() as demo:
|
|
27 |
with gr.Accordion('Load your custom models first'):
|
28 |
basem = gr.Textbox(label="Your Lora model")
|
29 |
exports = gr.Button("Load your models")
|
30 |
-
outputid = gr.Textbox(label="
|
31 |
exports.click(load_cust, inputs=[basem], outputs=[outputid])
|
32 |
output_image = gr.Image(label="Generated Image")
|
33 |
submit_button.click(generate_image, inputs=[prompt, negative_prompt], outputs=output_image)
|
|
|
5 |
pipeline = None
|
6 |
|
7 |
# Load the pipeline and LoRA weights
|
8 |
+
def load_cust(modelsyu, progress=gr.Progress()):
|
9 |
+
progress(10.4, desc="loading your lora models...")
|
10 |
+
global pipeline
|
11 |
pipeline = DiffusionPipeline.from_pretrained(modelsyu)
|
12 |
+
# Ensure the pipeline uses the CPU
|
13 |
+
pipeline.to("cpu")
|
14 |
+
return "Models loaded successfully"
|
15 |
+
|
16 |
def generate_image(prompt, negative_prompt):
|
17 |
global pipeline
|
18 |
# Generate the image with the provided prompts
|
19 |
if pipeline is None:
|
20 |
return "Pipeline not loaded. Please load the models first."
|
21 |
+
# Make sure the pipeline is set to use the CPU
|
22 |
+
pipeline.to("cpu")
|
23 |
image = pipeline(prompt, negative_prompt=negative_prompt).images[0]
|
24 |
return image
|
25 |
|
|
|
32 |
with gr.Accordion('Load your custom models first'):
|
33 |
basem = gr.Textbox(label="Your Lora model")
|
34 |
exports = gr.Button("Load your models")
|
35 |
+
outputid = gr.Textbox(label="Output", interactive=False)
|
36 |
exports.click(load_cust, inputs=[basem], outputs=[outputid])
|
37 |
output_image = gr.Image(label="Generated Image")
|
38 |
submit_button.click(generate_image, inputs=[prompt, negative_prompt], outputs=output_image)
|