Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from diffusers import DiffusionPipeline
|
3 |
+
|
4 |
+
# Load the pipeline and LoRA weights
|
5 |
+
|
6 |
+
def load_cust(base_model, models_sec):
|
7 |
+
pipeline = DiffusionPipeline.from_pretrained(base_model)
|
8 |
+
pipeline.load_lora_weights(models_sec)
|
9 |
+
|
10 |
+
def generate_image(prompt, negative_prompt):
|
11 |
+
# Generate the image with the provided prompts
|
12 |
+
image = pipeline(prompt, negative_prompt=negative_prompt).images[0]
|
13 |
+
return image
|
14 |
+
|
15 |
+
# Define the Gradio interface
|
16 |
+
with gr.Blocks() as demo:
|
17 |
+
gr.Markdown("# Text to Image Generation Custom models Demo")
|
18 |
+
prompt = gr.Textbox(label="Prompt", placeholder="Enter your text prompt here")
|
19 |
+
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Enter your negative prompt here")
|
20 |
+
submit_button = gr.Button("Generate Image")
|
21 |
+
with gr.Accordion('load your custom models first'):
|
22 |
+
basem = gr.Textbox(label="your models adapter")
|
23 |
+
secondm = gr.Textbox(label="your main models")
|
24 |
+
exports = gr.Button("load your models")
|
25 |
+
exports.click(load_cust, inputs=[basem, secondm], outputs=[])
|
26 |
+
output_image = gr.Image(label="Generated Image")
|
27 |
+
submit_button.click(generate_image, inputs=[prompt, negative_prompt], outputs=output_image)
|
28 |
+
|
29 |
+
# Launch the demo
|
30 |
+
demo.launch()
|