File size: 5,023 Bytes
a162e39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import time
import pandas as pd
import pydeck as pdk
import streamlit as st

from filter_wrap import FilterWrapper
from distribution_wrap import DistriWrapper
from redux_wrap import ReduxWrapper
from symetry_wrap import SymetryWrapper
from rotate_wrap import RotateWrapper
from sort_wrap import SortWrapper
from team_wrap import TeamWrapper
from reward_wrap import RewardWrapper
from monitor_wrap import MonitorWrapper

from runner import run_episode
from settings import Settings, define_
import param_
from swarmenv import SwarmEnv



def run(with_streamlit=True, blues: int = 4, reds: int = 6, policy_folder: str = 'reds_last'):

    # define the policy folder is: where the trained policies are to be found
    Settings.policy_folder = policy_folder

    # define settings with Streamlit (or use default parameters)
    blues, reds = define_(with_streamlit=with_streamlit, blues=blues, reds=reds)

    # put in place the map
    deck_map, initial_view_state = pre_show(with_streamlit=with_streamlit)

    # launch the episode to get the data
    steps = int(param_.DURATION / param_.STEP)
    monitor_env = MonitorWrapper(SwarmEnv(blues=blues, reds=reds), steps)
    env = FilterWrapper(monitor_env)
    env = DistriWrapper(env)
    env = ReduxWrapper(env)
    env = SortWrapper(
            SymetryWrapper(
                RotateWrapper(env)))

    env = RewardWrapper(TeamWrapper(env, is_double=True), is_double=True)

    obs = env.reset()
    run_episode(env, obs, blues=blues, reds=reds)

    print('done')

    # display the data with Streamlit
    if with_streamlit:
        show(monitor_env, deck_map, initial_view_state)


def pre_show(with_streamlit=True):
    if with_streamlit:
        deck_map = st.empty()
        pitch = st.slider('pitch', 0, 100, 50)
        lat, lon = Settings.latlon
        initial_view_state = pdk.ViewState(
            latitude=lat,
            longitude=lon,
            zoom=13,
            pitch=pitch
        )
        return deck_map, initial_view_state
    else:
        return 0, 0


def show(monitor_env, deck_map, initial_view_state):

    blue_df, red_df, fire_df, blue_path_df, red_path_df = monitor_env.get_df()
    step_max = monitor_env.step_

    for step in range(step_max):
        deck_map.pydeck_chart(pdk.Deck(
            map_provider="mapbox",
            map_style='mapbox://styles/mapbox/light-v9',
            initial_view_state=initial_view_state,
            layers=get_layers(blue_df,
                              red_df,
                              blue_path_df,
                              red_path_df,
                              step)
        ))

        time.sleep(param_.STEP*param_.SIMU_SPEED)


def get_layers(df_blue: pd.DataFrame, df_red: pd.DataFrame,
               df_blue_path: [pd.DataFrame], df_red_path: [pd.DataFrame],
               step) -> [pdk.Layer]:
    lat, lon = Settings.latlon
    df_target = pd.DataFrame({'lat': [lat], 'lon': [lon]})
    layers_ = get_target_layers(df_target)

    for (df, dfp, b) in [(df_blue, df_blue_path, True), (df_red, df_red_path, False)]:
        layers_.append(get_current_drone_layers(df, step))
        nb_drones = df['d_index'].max() + 1
        for drone_index in range(nb_drones):
            layers_.append(get_path_layers(dfp[drone_index], step))

    return layers_


def get_target_layers(df_target) -> [pdk.Layer]:
    return [
        # this is the GROUNDZONE
        pdk.Layer(
            'ScatterplotLayer',
            data=df_target,
            get_position='[lon, lat]',
            get_color='[0, 120, 0]',
            get_radius=Settings.groundzone,
            get_line_width=50,
            lineWidthMinPixels=2,
            stroked=True,
            filled=False,

        ),

        pdk.Layer(
            'ScatterplotLayer',
            data=df_target,
            get_position='[lon, lat]',
            get_color='[0, 0, 200]',
            get_radius=30,
        ),
    ]


def get_current_drone_layers(df_drone: pd.DataFrame, step: int) -> [pdk.Layer]:
    df_current = df_drone[df_drone.step == step]

    return [
        pdk.Layer(
            'ScatterplotLayer',
            data=df_current,
            get_position='[lon, lat, zed]',
            get_color='color',
            get_radius=50,

        ),
        pdk.Layer(
            'ScatterplotLayer',
            data=df_current,
            get_position='[lon, lat]',
            get_color=[50, 50, 50, 50],
            get_radius=50,

        ),
    ]


def get_path_layers(df_path: pd.DataFrame, step: int) -> [pdk.Layer]:
    df_current = df_path[df_path.step == step]
    return [
        pdk.Layer(
            type="PathLayer",
            data=df_current,
            pickable=True,
            get_color="color",
            width_scale=10,
            width_min_pixels=1,
            get_path="path",
            get_width=1,
        )
    ]


# and ... do not forget
run(with_streamlit=True, policy_folder='last')
# run(blues=1, reds=3, with_streamlit=False, policy_folder='0527_14_test')