File size: 7,294 Bytes
a162e39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import numpy as np
from stable_baselines3 import SAC
from stable_baselines3.sac.policies import MlpPolicy
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.env_checker import check_env
import os

from monitor_wrap import MonitorWrapper
from filter_wrap import FilterWrapper
from distribution_wrap import DistriWrapper
from redux_wrap import ReduxWrapper
from symetry_wrap import SymetryWrapper
from rotate_wrap import RotateWrapper
from sort_wrap import SortWrapper
from team_wrap import TeamWrapper
from reward_wrap import RewardWrapper

from settings import Settings
from swarmenv import SwarmEnv
import param_


def bi_train(blue_model, red_model, blues: int = 1, reds: int = 1,
             blue_dispersion: np.float32 = 1, red_dispersion: np.float32 = 1, total_timesteps: int = 1000):
    # If needed create save dir
    save_dir = "policies/" + Settings.policy_folder + f"/b{blues}r{reds}/"
    save_last_dir = "policies/last" + f"/b{blues}r{reds}/"
    os.makedirs(save_dir, exist_ok=True)
    os.makedirs(save_last_dir, exist_ok=True)

    # set the dispersion to initial drone positions
    Settings.blue_distance_factor = blue_dispersion * Settings.blue_distance_factor
    Settings.red_distance_factor = red_dispersion * Settings.red_distance_factor
    Settings.red_theta_noise = red_dispersion * Settings.red_theta_noise
    Settings.red_rho_noise = red_dispersion * Settings.red_rho_noise

    # launch learning for red drones and then blue drones
    red_model.learn(total_timesteps=total_timesteps)
    mean_reward, std_reward = evaluate_policy(red_model, red_model.env, n_eval_episodes=10)
    print(f"REDS b{blues}r{reds} disp_b:{10*blue_dispersion:2.0f} disp_r{10*red_dispersion:2.0f}: "
          f"mean_reward:{mean_reward:.2f} +/- {std_reward:.2f}")
    red_model.save(save_dir + f"reds_b{10 * blue_dispersion:2.0f}r{10 * red_dispersion:2.0f}")
    red_model.save(save_last_dir + "reds_last")

    blue_model.learn(total_timesteps=total_timesteps)
    mean_reward, std_reward = evaluate_policy(blue_model, blue_model.env, n_eval_episodes=10)
    print(f"BLUES b{blues}r{reds} disp_b:{10*blue_dispersion:2.0f} disp_r{10*red_dispersion:2.0f}: "
          f"mean_reward:{mean_reward:.2f} +/- {std_reward:.2f}")
    blue_model.save(save_dir + f"blues_{10 * blue_dispersion:2.0f}r{10 * red_dispersion:2.0f}")
    blue_model.save(save_last_dir + "blues_last")

    return blue_model, red_model


def meta_train(blues: int = 1, reds: int = 1,
               max_dispersion: np.float32 = 3, iteration: int = 10,
               total_timesteps: int = 100):
    Settings.blues, Settings.reds = blues, reds

    # launch the episode to get the data
    steps = int(param_.DURATION / param_.STEP)

    env = SortWrapper(
        SymetryWrapper(
            RotateWrapper(
                ReduxWrapper(
                    DistriWrapper(
                        FilterWrapper(
                            MonitorWrapper(
                                SwarmEnv(blues=blues, reds=reds), steps, verbose=False)))))))

    blue_env = RewardWrapper(TeamWrapper(env, is_blue=True), is_blue=True)
    red_env = RewardWrapper(TeamWrapper(env, is_blue=False), is_blue=False)

    blue_model = SAC(MlpPolicy, blue_env, verbose=0)
    red_model = SAC(MlpPolicy, red_env, verbose=0)

    for red_dispersion in np.linspace(0.1, max_dispersion, num=iteration):
        for blue_dispersion in np.linspace(max_dispersion, 0.3, num=iteration):
            blue_model, red_model = bi_train(
                blue_model, red_model, blues=blues, reds=reds,
                blue_dispersion=blue_dispersion, red_dispersion=red_dispersion,
                total_timesteps=total_timesteps)


def super_meta_train(max_blues: int = 3, max_reds: int = 3, max_dispersion: np.float32 = 3,
                     iteration: int = 10, total_timesteps: int = 100, policy_folder: str = "default"):
    Settings.policy_folder = policy_folder
    for drones_nb in range(2, max_blues + max_reds + 1):
        for blues in range(1, max_blues + 1):
            reds = drones_nb - blues
            if 1 <= reds <= max_reds:
                print(f"reds :{reds}, blues: {blues}")
                meta_train(blues=blues, reds=reds,
                           max_dispersion=max_dispersion, iteration=iteration, total_timesteps=total_timesteps)


def print_spaces(env, name: str):
    print("++++++++++++")
    print(name)
    print(env.action_space)
    print(env.observation_space)
    print("============")
    check_env(env, warn=True)


# super_meta_train(max_blues=1, max_reds=1, iteration=5, max_dispersion=1, total_timesteps=50000, policy_folder="0528_14")
# super_meta_train(max_blues=2, max_reds=2, iteration=4, max_dispersion=3, total_timesteps=10, policy_folder="0528_test")


def simple_red_train(max_dispersion: np.float32 = 3,
                     blues: int = 1, reds: int = 1,
                     iteration: int = 25, total_timesteps: int = 100,
                     policy_folder: str = "simple_red"):
    Settings.policy_folder = policy_folder
    print(f"Simple_red: reds :{reds}, blues: {blues}")
    # If needed create save dir
    save_dir = "policies/" + Settings.policy_folder + f"/b{blues}r{reds}/"
    save_last_dir = "policies/last" + f"/b{blues}r{reds}/"
    os.makedirs(save_dir, exist_ok=True)
    os.makedirs(save_last_dir, exist_ok=True)

        # launch the episode to get the data
    steps = int(param_.DURATION / param_.STEP)
    Settings.blues, Settings.reds = blues, reds

    env = SortWrapper(
        SymetryWrapper(
            RotateWrapper(
                ReduxWrapper(
                    DistriWrapper(
                        FilterWrapper(
                            MonitorWrapper(
                                SwarmEnv(blues=blues, reds=reds), steps, verbose=False)))))))



    red_env = RewardWrapper(TeamWrapper(env, is_blue=False), is_blue=False)
    red_model = SAC(MlpPolicy, red_env, verbose=1)


    # set the dispersion to initial drone positions
    Settings.blue_distance_factor = 10 * Settings.blue_distance_factor

    this_iteration = 0

    for red_dispersion in np.linspace(0.33, max_dispersion, num=iteration):

        Settings.red_distance_factor = red_dispersion

        # launch learning for red drones and then blue drones
        this_iteration += 1
        batch = 1
        mean_reward = 0
        delta_reward = 0
        stability = 0
        count = 0
        while mean_reward < 9 or stability < 3 or count < 30:
            count += 1
            red_model.learn(total_timesteps=total_timesteps//10)
            last_reward = mean_reward
            mean_reward, std_reward = evaluate_policy(red_model, red_model.env, n_eval_episodes=100)
            delta_reward = mean_reward - last_reward
            if -0.1 <= delta_reward <= 0.1:
                stability += 1
            else:
                stability = 0
            print(f"REDS b{blues}r{reds} iteration{this_iteration} batch{batch}: "
                  f"mean_reward:{mean_reward:.2f} +/- {std_reward:.2f}")
            red_model.save(save_dir + f"{this_iteration} batch{batch+1}")
            red_model.save(save_last_dir + "reds_last")
            batch += 1

simple_red_train(total_timesteps = 50000, policy_folder="simply_red")