File size: 1,397 Bytes
1ab4362
 
3bbff8c
b2820ed
3bbff8c
b2820ed
3bbff8c
b2820ed
401411c
3bbff8c
 
f1f799c
401411c
 
 
3bbff8c
e07cb10
 
3c02d56
 
 
11e71f5
3659c6a
 
 
 
b797cc6
e07cb10
c9c4e90
 
b797cc6
 
5e8c0ad
4866071
b797cc6
005eb92
b797cc6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import gradio as gr

from transformers import AutoModel, pipeline, AutoTokenizer, AutoModelForSequenceClassification

access_token = "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"

model = AutoModelForSequenceClassification.from_pretrained("EkhiAzur/RoBERTA_3", token=access_token)

tokenizer = AutoTokenizer.from_pretrained(
  "EkhiAzur/RoBERTA_3",
  token = access_token,
  use_fast=True,
  add_prefix_space=True,
)

classifier = pipeline("text-classification", tokenizer=tokenizer, model=model, max_length=512,
                padding=True, truncation=True, batch_size=1)

def prozesatu(Testua, request: gr.Request):
    print(request.headers["Accept-Language"])
    return request.headers["Accept-Language"]
    prediction = prozesatu.classifier(Testua)[0]
    if prediction["label"]=="GAI":
        return {"Gai":prediction["score"], "Ez gai": 1-prediction["score"]}
    else:
        return {"Gai":1-prediction["score"], "Ez gai": prediction["score"]}
    #return 'C1:{}. Probabilitatea:{:.2f}'.format(prediction["label"], round(prediction["score"], 2))

prozesatu.classifier = classifier

demo = gr.Interface(
    fn=prozesatu, 
    inputs=gr.Textbox(label="Testua", placeholder="Idatzi hemen testua..."), 
    outputs="label", 
    interpretation="default",
    examples=[["Gaur egungo teknologiak bikainak dira..."]]).launch()

#gr.Interface(fn=prozesatu, inputs="text", outputs="text").launch()