|
from pathlib import Path |
|
|
|
from kaggle import api as kapi |
|
import pandas as pd |
|
from sklearn.model_selection import train_test_split as sk_train_test_split |
|
|
|
|
|
def download_dataset(dest_dir, dataset, filename): |
|
if (Path(dest_dir) / filename).exists(): |
|
print('Dataset already exists, do not download') |
|
return |
|
print('Downloading dataset...') |
|
kapi.dataset_download_file(dataset=dataset, file_name=filename, path=dest_dir, quiet=False) |
|
|
|
|
|
|
|
def read_dataset(dest_dir, filename) -> pd.DataFrame: |
|
print('Reading dataset...') |
|
json_file_path = Path(dest_dir) / filename |
|
df = pd.read_json(json_file_path, lines=True) |
|
print('Dataset read') |
|
return df |
|
|
|
|
|
def download_and_read_dataset(dest_dir, dataset, filename): |
|
download_dataset(dest_dir=dest_dir, dataset=dataset, filename=filename) |
|
return read_dataset(dest_dir=dest_dir, filename=filename) |
|
|
|
|
|
def filter_columns(df: pd.DataFrame, columns) -> pd.DataFrame: |
|
print("Removing unwanted columns...") |
|
df = df[columns] |
|
print("Columns removed...") |
|
return df |
|
|
|
|
|
def create_features_labels(df: pd.DataFrame, old_label, new_label): |
|
def transform_categories(categories): |
|
categories = categories.split() |
|
category = categories[0] |
|
if '.' in category: |
|
return category[: category.index(".")] |
|
return category |
|
labels = df[old_label].apply(transform_categories) |
|
labels = labels.rename(new_label) |
|
features = df.drop(old_label, axis=1) |
|
return features, labels |
|
|
|
|
|
def train_test_split(X, y, test_size=0.25): |
|
return sk_train_test_split(X, y, test_size=test_size, stratify=y) |
|
|
|
|
|
def write_dataset(dest_dir, X, y, filename): |
|
dest_dir = Path(dest_dir) |
|
df = pd.concat((X, y), axis=1) |
|
df.to_json(filename, orient="records", lines=True) |
|
|