igorithm's picture
Dataset download utilities
1a450dd
raw
history blame
1.81 kB
from pathlib import Path
from kaggle import api as kapi
import pandas as pd
from sklearn.model_selection import train_test_split as sk_train_test_split
def download_dataset(dest_dir, dataset, filename):
if (Path(dest_dir) / filename).exists():
print('Dataset already exists, do not download')
return
print('Downloading dataset...')
kapi.dataset_download_file(dataset=dataset, file_name=filename, path=dest_dir, quiet=False)
# Takes a lot of RAM
def read_dataset(dest_dir, filename) -> pd.DataFrame:
print('Reading dataset...')
json_file_path = Path(dest_dir) / filename
df = pd.read_json(json_file_path, lines=True)
print('Dataset read')
return df
def download_and_read_dataset(dest_dir, dataset, filename):
download_dataset(dest_dir=dest_dir, dataset=dataset, filename=filename)
return read_dataset(dest_dir=dest_dir, filename=filename)
def filter_columns(df: pd.DataFrame, columns) -> pd.DataFrame:
print("Removing unwanted columns...")
df = df[columns]
print("Columns removed...")
return df
def create_features_labels(df: pd.DataFrame, old_label, new_label):
def transform_categories(categories):
categories = categories.split()
category = categories[0]
if '.' in category:
return category[: category.index(".")]
return category
labels = df[old_label].apply(transform_categories)
labels = labels.rename(new_label)
features = df.drop(old_label, axis=1)
return features, labels
def train_test_split(X, y, test_size=0.25):
return sk_train_test_split(X, y, test_size=test_size, stratify=y)
def write_dataset(dest_dir, X, y, filename):
dest_dir = Path(dest_dir)
df = pd.concat((X, y), axis=1)
df.to_json(filename, orient="records", lines=True)