Valeriy Sinyukov
commited on
Commit
·
43a63e6
1
Parent(s):
35e0bf8
Ipynb preparing russian dataset
Browse files
category_classification/datasets/prepare_ru_dataset.ipynb
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"from pathlib import Path\n",
|
10 |
+
"\n",
|
11 |
+
"import pandas as pd\n",
|
12 |
+
"\n",
|
13 |
+
"from datasets_common import write_dataset, train_test_split"
|
14 |
+
]
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"cell_type": "code",
|
18 |
+
"execution_count": 2,
|
19 |
+
"metadata": {},
|
20 |
+
"outputs": [],
|
21 |
+
"source": [
|
22 |
+
"dataset_dir = Path('ru')\n",
|
23 |
+
"parts_dir = dataset_dir / 'dataset_parts' "
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": 3,
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [],
|
31 |
+
"source": [
|
32 |
+
"dfs = []\n",
|
33 |
+
"for dataset_path in parts_dir.glob(\"*.csv\"):\n",
|
34 |
+
" dfs.append(pd.read_csv(dataset_path))\n",
|
35 |
+
"df = pd.concat(dfs)"
|
36 |
+
]
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"cell_type": "code",
|
40 |
+
"execution_count": 4,
|
41 |
+
"metadata": {},
|
42 |
+
"outputs": [],
|
43 |
+
"source": [
|
44 |
+
"label_name = 'category'\n",
|
45 |
+
"df = df.rename(columns={'categories': label_name})\n",
|
46 |
+
"for column in df.columns:\n",
|
47 |
+
" def transform_cell(value):\n",
|
48 |
+
" prefixes = [\"{'translation_text': '\", \"{\\'translation_text\\': \\'\", \"\\'translation_text\\':\", \"{'translation_text': \\\"\"]\n",
|
49 |
+
" suffix = \"\\'}\"\n",
|
50 |
+
" for prefix in prefixes:\n",
|
51 |
+
" if value.startswith(prefix):\n",
|
52 |
+
" value = value[len(prefix):]\n",
|
53 |
+
" if value.endswith(suffix):\n",
|
54 |
+
" value = value[:-len(suffix)]\n",
|
55 |
+
" return value\n",
|
56 |
+
" df[column] = df[column].apply(transform_cell)"
|
57 |
+
]
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"cell_type": "code",
|
61 |
+
"execution_count": 5,
|
62 |
+
"metadata": {},
|
63 |
+
"outputs": [],
|
64 |
+
"source": [
|
65 |
+
"y = df[label_name]\n",
|
66 |
+
"X = df.drop(columns=label_name)"
|
67 |
+
]
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"cell_type": "code",
|
71 |
+
"execution_count": 6,
|
72 |
+
"metadata": {},
|
73 |
+
"outputs": [],
|
74 |
+
"source": [
|
75 |
+
"X_train, X_test, y_train, y_test = train_test_split(X, y)"
|
76 |
+
]
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"cell_type": "code",
|
80 |
+
"execution_count": 7,
|
81 |
+
"metadata": {},
|
82 |
+
"outputs": [],
|
83 |
+
"source": [
|
84 |
+
"train_filename = \"arxiv_train.csv\"\n",
|
85 |
+
"test_filename = \"arxiv_test.csv\"\n",
|
86 |
+
"write_dataset(dest_dir=dataset_dir, X=X_train, y=y_train, filename=train_filename, to_json=False)\n",
|
87 |
+
"write_dataset(dest_dir=dataset_dir, X=X_test, y=y_test, filename=test_filename, to_json=False)"
|
88 |
+
]
|
89 |
+
}
|
90 |
+
],
|
91 |
+
"metadata": {
|
92 |
+
"kernelspec": {
|
93 |
+
"display_name": ".venv",
|
94 |
+
"language": "python",
|
95 |
+
"name": "python3"
|
96 |
+
},
|
97 |
+
"language_info": {
|
98 |
+
"codemirror_mode": {
|
99 |
+
"name": "ipython",
|
100 |
+
"version": 3
|
101 |
+
},
|
102 |
+
"file_extension": ".py",
|
103 |
+
"mimetype": "text/x-python",
|
104 |
+
"name": "python",
|
105 |
+
"nbconvert_exporter": "python",
|
106 |
+
"pygments_lexer": "ipython3",
|
107 |
+
"version": "3.10.12"
|
108 |
+
}
|
109 |
+
},
|
110 |
+
"nbformat": 4,
|
111 |
+
"nbformat_minor": 2
|
112 |
+
}
|