Valeriy Sinyukov
commited on
Commit
·
da67e9c
1
Parent(s):
82ec9f7
Add ipynb for test
Browse files
category_classification/test.ipynb
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import json\n",
|
10 |
+
"import math\n",
|
11 |
+
"from pathlib import Path\n",
|
12 |
+
"\n",
|
13 |
+
"import numpy as np\n",
|
14 |
+
"import pandas as pd\n",
|
15 |
+
"from datasets import Dataset\n",
|
16 |
+
"from sklearn.metrics import f1_score, accuracy_score, log_loss\n",
|
17 |
+
"from tqdm import tqdm\n",
|
18 |
+
"\n",
|
19 |
+
"from models.models import language_to_models"
|
20 |
+
]
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"cell_type": "code",
|
24 |
+
"execution_count": null,
|
25 |
+
"metadata": {},
|
26 |
+
"outputs": [],
|
27 |
+
"source": [
|
28 |
+
"en = \"en\"\n",
|
29 |
+
"ru = \"ru\"\n",
|
30 |
+
"datasets_dir = Path(\"datasets\")\n",
|
31 |
+
"test_filename = \"arxiv_test\"\n",
|
32 |
+
"test_dataset_filename = {\n",
|
33 |
+
" en: datasets_dir / en / test_filename,\n",
|
34 |
+
" ru: datasets_dir / ru / test_filename,\n",
|
35 |
+
"}"
|
36 |
+
]
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"cell_type": "code",
|
40 |
+
"execution_count": null,
|
41 |
+
"metadata": {},
|
42 |
+
"outputs": [],
|
43 |
+
"source": [
|
44 |
+
"test_datasets = {}\n",
|
45 |
+
"for lang in (en, ru):\n",
|
46 |
+
" csv_file = str(test_dataset_filename[lang]) + \".csv\"\n",
|
47 |
+
" json_file = str(test_dataset_filename[lang]) + \".json\"\n",
|
48 |
+
" if Path(csv_file).exists():\n",
|
49 |
+
" test_datasets[lang] = pd.read_csv(csv_file)\n",
|
50 |
+
" else:\n",
|
51 |
+
" test_datasets[lang] = pd.read_json(json_file, lines=True)"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"cell_type": "code",
|
56 |
+
"execution_count": null,
|
57 |
+
"metadata": {},
|
58 |
+
"outputs": [],
|
59 |
+
"source": [
|
60 |
+
"test_results_filename = Path(\"test_results.json\")\n",
|
61 |
+
"if test_results_filename.exists():\n",
|
62 |
+
" with open(test_results_filename, \"r\") as f:\n",
|
63 |
+
" test_results = json.load(f)\n",
|
64 |
+
"else:\n",
|
65 |
+
" test_results = {}"
|
66 |
+
]
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"cell_type": "code",
|
70 |
+
"execution_count": null,
|
71 |
+
"metadata": {},
|
72 |
+
"outputs": [],
|
73 |
+
"source": [
|
74 |
+
"def pred_to_1d(pred):\n",
|
75 |
+
" return pred.idxmax(axis=1)\n",
|
76 |
+
"\n",
|
77 |
+
"\n",
|
78 |
+
"def true_to_nd(true, columns):\n",
|
79 |
+
" columns = list(columns)\n",
|
80 |
+
" true_arr = np.zeros((len(true), len(columns)))\n",
|
81 |
+
" column_numbers = true.apply(lambda label: columns.index(label)).to_numpy()\n",
|
82 |
+
" one_inds = np.column_stack((np.arange(len(true)), column_numbers))\n",
|
83 |
+
" true_arr[one_inds] = 1\n",
|
84 |
+
" true = pd.DataFrame(true_arr, columns=columns)\n",
|
85 |
+
" return true\n",
|
86 |
+
"\n",
|
87 |
+
"\n",
|
88 |
+
"def accuracy(pred, true):\n",
|
89 |
+
" return accuracy_score(true, pred_to_1d(pred))\n",
|
90 |
+
"\n",
|
91 |
+
"\n",
|
92 |
+
"def f1(pred, true):\n",
|
93 |
+
" return f1_score(true, pred_to_1d(pred), average=\"macro\")\n",
|
94 |
+
"\n",
|
95 |
+
"\n",
|
96 |
+
"def cross_entropy(pred, true):\n",
|
97 |
+
" pred = pd.DataFrame(\n",
|
98 |
+
" pred.to_numpy() / pred.sum(axis=1).to_numpy()[:, None], columns=pred.columns\n",
|
99 |
+
" )\n",
|
100 |
+
" return log_loss(true_to_nd(true, pred.columns), pred)"
|
101 |
+
]
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"cell_type": "code",
|
105 |
+
"execution_count": null,
|
106 |
+
"metadata": {},
|
107 |
+
"outputs": [],
|
108 |
+
"source": [
|
109 |
+
"metrics = {\"Macro F1\": f1, \"Accuracy\": accuracy, \"Cross-entropy loss\": cross_entropy}"
|
110 |
+
]
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"cell_type": "code",
|
114 |
+
"execution_count": null,
|
115 |
+
"metadata": {},
|
116 |
+
"outputs": [],
|
117 |
+
"source": [
|
118 |
+
"predications_dir = Path(\"pred\")\n",
|
119 |
+
"predications_dir.mkdir(exist_ok=True)"
|
120 |
+
]
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"cell_type": "code",
|
124 |
+
"execution_count": null,
|
125 |
+
"metadata": {},
|
126 |
+
"outputs": [],
|
127 |
+
"source": [
|
128 |
+
"def canonicalize_label(label):\n",
|
129 |
+
" if \".\" in label:\n",
|
130 |
+
" return label[: label.index(\".\")]\n",
|
131 |
+
" return label\n",
|
132 |
+
"\n",
|
133 |
+
"\n",
|
134 |
+
"def predict(model_name, model, dataset: pd.DataFrame, batch_size=32, first: int = 3000):\n",
|
135 |
+
" label = \"category\"\n",
|
136 |
+
" all_labels = list(dataset[label].unique())\n",
|
137 |
+
" if first is not None:\n",
|
138 |
+
" dataset = dataset[:first]\n",
|
139 |
+
" true = dataset[label]\n",
|
140 |
+
" prediction_file_path = predications_dir / (model_name + \".csv\")\n",
|
141 |
+
" dataset_size = len(dataset)\n",
|
142 |
+
" if not prediction_file_path.exists():\n",
|
143 |
+
" preds = []\n",
|
144 |
+
" for i in tqdm(\n",
|
145 |
+
" range(0, dataset_size + batch_size, batch_size),\n",
|
146 |
+
" desc=f\"Predicting using {model_name}\",\n",
|
147 |
+
" total=math.ceil(dataset_size / batch_size),\n",
|
148 |
+
" unit=\"batch\",\n",
|
149 |
+
" ):\n",
|
150 |
+
" data = dataset.iloc[i : i + batch_size]\n",
|
151 |
+
" if data.empty:\n",
|
152 |
+
" break\n",
|
153 |
+
" data = Dataset.from_pandas(data)\n",
|
154 |
+
" batch_pred = model(data)\n",
|
155 |
+
" batch_pred_canonicalised = []\n",
|
156 |
+
" for paper_pred in batch_pred:\n",
|
157 |
+
" labels_dict = {}\n",
|
158 |
+
" for label_score in paper_pred:\n",
|
159 |
+
" label = canonicalize_label(label_score[\"label\"])\n",
|
160 |
+
" if label not in all_labels:\n",
|
161 |
+
" return None, None\n",
|
162 |
+
" labels_dict[label] = label_score[\"score\"]\n",
|
163 |
+
" batch_pred_canonicalised.append(labels_dict)\n",
|
164 |
+
" preds.extend(batch_pred_canonicalised)\n",
|
165 |
+
" else:\n",
|
166 |
+
" preds = pd.read_csv(prediction_file_path, index_col=0)\n",
|
167 |
+
" preds = pd.DataFrame(preds).fillna(0)\n",
|
168 |
+
" for label in all_labels:\n",
|
169 |
+
" if label not in preds.columns:\n",
|
170 |
+
" preds[label] = 0\n",
|
171 |
+
" preds = preds.reindex(sorted(preds.columns), axis=1)\n",
|
172 |
+
" if not prediction_file_path.exists():\n",
|
173 |
+
" preds.to_csv(prediction_file_path)\n",
|
174 |
+
" return preds, true\n",
|
175 |
+
"\n",
|
176 |
+
"\n",
|
177 |
+
"for lang, name_get_model in language_to_models.items():\n",
|
178 |
+
" lang_results = test_results.setdefault(lang, {})\n",
|
179 |
+
" for metric_name, metic in metrics.items():\n",
|
180 |
+
" metrics_results = lang_results.setdefault(metric_name, {})\n",
|
181 |
+
" for model_name, get_model in name_get_model.items():\n",
|
182 |
+
" model_name = model_name.replace(\"/\", \".\")\n",
|
183 |
+
" if model_name not in metrics_results:\n",
|
184 |
+
" test_size = 3000 if en == lang else 500\n",
|
185 |
+
" pred, true = predict(model_name, get_model(), test_datasets[lang], first=test_size)\n",
|
186 |
+
" if pred is None:\n",
|
187 |
+
" print(f\"{model_name} does not produce labels that we can estimate\")\n",
|
188 |
+
" continue\n",
|
189 |
+
" metrics_results[model_name] = metic(pred, true)\n",
|
190 |
+
" print(f\"{metric_name} for {model_name} = {metrics_results[model_name]}\")"
|
191 |
+
]
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"cell_type": "code",
|
195 |
+
"execution_count": null,
|
196 |
+
"metadata": {},
|
197 |
+
"outputs": [],
|
198 |
+
"source": [
|
199 |
+
"with open(test_results_filename, \"w\") as f:\n",
|
200 |
+
" json.dump(test_results, f)"
|
201 |
+
]
|
202 |
+
}
|
203 |
+
],
|
204 |
+
"metadata": {
|
205 |
+
"kernelspec": {
|
206 |
+
"display_name": ".venv",
|
207 |
+
"language": "python",
|
208 |
+
"name": "python3"
|
209 |
+
},
|
210 |
+
"language_info": {
|
211 |
+
"codemirror_mode": {
|
212 |
+
"name": "ipython",
|
213 |
+
"version": 3
|
214 |
+
},
|
215 |
+
"file_extension": ".py",
|
216 |
+
"mimetype": "text/x-python",
|
217 |
+
"name": "python",
|
218 |
+
"nbconvert_exporter": "python",
|
219 |
+
"pygments_lexer": "ipython3",
|
220 |
+
"version": "3.10.12"
|
221 |
+
}
|
222 |
+
},
|
223 |
+
"nbformat": 4,
|
224 |
+
"nbformat_minor": 2
|
225 |
+
}
|