File size: 1,248 Bytes
d8f8e92
 
 
 
 
 
 
f55ed24
d8f8e92
 
f55ed24
 
 
 
6870193
9ce9fef
 
 
6f6e1be
f55ed24
 
 
 
 
 
 
 
 
 
37ac8dd
f55ed24
 
55898f4
f55ed24
 
 
 
60b5753
6870193
 
60b5753
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
---
title: README
emoji: πŸ‘
colorFrom: yellow
colorTo: yellow
sdk: static
pinned: false
license: apache-2.0
---

Hierarchy Transformers (HiTs) are capable of interpreting and encoding hierarchies explicitly. 

The relevant code in [HierarchyTransformers](https://github.com/KRR-Oxford/HierarchyTransformers) extends from [Sentence-Transformers](https://huggingface.co/sentence-transformers).

## Get Started

Install `hierarchy_tranformers` (check our [repository](https://github.com/KRR-Oxford/HierarchyTransformers)) through `pip` or `GitHub`.

Use the following code to get started with HiTs:

```python
from hierarchy_transformers import HierarchyTransformer
from hierarchy_transformers.utils import get_torch_device

# set up the device (use cpu if no gpu found)
gpu_id = 0
device = get_torch_device(gpu_id)

# load the model
model = HierarchyTransformer.load_pretrained('Hierarchy-Transformers/HiT-MiniLM-L12-WordNet', device)

# entity names to be encoded.
entity_names = ["computer", "personal computer", "fruit", "berry"]

# get the entity embeddings
entity_embeddings = model.encode(entity_names)
```

## Datasets

The datasets for training and evaluating HiTs are available at [Zenodo](https://zenodo.org/doi/10.5281/zenodo.10511042).